Ramification of Rough Paths after
 Massimiliano Gubinelli

presented by
Robert A. Crowell

University of Bonn
September 11 and 15, 2016

Prepared for the Hausdorff Summer School
Paraproducts and Analysis of Rough Paths

Section 1

Trees, Gardening and Forestry

Decorated Rooted Trees

A rooted tree is a finite, cycle-free graph with a distinguished node (its root).

Let \mathcal{L} be a finite set of labels. A \mathcal{L}-decorated tree is a rooted tree together with an association of a label to every vertex.

For example $\mathcal{L}=\{1,2,3\}$:

$$
\bullet 2 \quad 0_{1}^{3} \quad \bullet_{2}^{2} 1 \quad \underbrace{2}_{1} \quad \underbrace{1}_{1}
$$

Cultivating Trees

We have a recursive way of growing rooted, labeled trees.
Given $\tau_{1}, \ldots, \tau_{k}$ trees and a label $a \in \mathcal{L}$, let

$$
\tau=\left[\tau_{1}, \cdots, \tau_{k}\right]_{a}
$$

be the tree obtained by attaching $\tau_{1}, \cdots, \tau_{k}$ to a new root a.
Observe that we can grow any tree using the set of labeled vertices $\left\{\bullet{ }_{a}\right\}_{a \in \mathcal{L}}$ and the map $[-]_{-}$.

$$
[\bullet]=\emptyset \quad[\bullet,[\bullet]]=\mathfrak{\vartheta}
$$

Tree Polynomial Algebra

Let $\mathcal{T}_{\mathcal{L}}$ denote the set of decorated trees and $\mathbf{1}$ the empty tree.
We can define the tree polynomial algebra

$$
\mathcal{A} \mathcal{T}_{\mathcal{L}}=\left\langle\mathcal{T}_{\mathcal{L}} \cup\{\mathbf{1}\}\right\rangle_{\mathbb{R}-\mathrm{Alg}}
$$

Elements are finite formal sums of formal monomials with coefficients in \mathbb{R}.

Explicit construction: $\mathcal{F}_{\mathcal{L}}=\left\{\tau_{1} \cdots \tau_{k}: n \in \mathbb{N}_{0}, \tau_{i} \in \mathcal{T}_{\mathcal{L}}\right\}$ is the set of labeled forests. Then $\operatorname{span}_{\mathbb{R}}\left\{\mathcal{F}_{\mathcal{L}}\right\}$ is an object in $\underline{\mathbb{R} \text {-Mod, on }}$ which we declare inner multiplication of polynomials to obtain an algebra.

Grading

Graduation $\mathrm{g}\left(\tau_{1} \cdots \tau_{k}\right)=\left|\tau_{1}\right|+\ldots+\left|\tau_{k}\right|$ with $\left|\tau_{i}\right|$ being the number of vertices of the tree (the empty has zero vertices).

Setting \mathcal{F}_{n} the set of forests of degree up to n :

$$
\mathcal{A}_{n} \mathcal{T}_{\mathcal{L}}=\left\langle\mathcal{F}_{n}\right\rangle_{\underline{\mathbb{R}-\mathrm{Mod}_{\mathrm{od}}}}
$$

and

$$
\mathcal{A} \mathcal{T}_{\mathcal{L}}=\coprod_{n=0}^{\infty} \mathcal{A}_{n} \mathcal{T}_{\mathcal{L}}
$$

We have the inclusions

$$
\mathcal{T}_{\mathcal{L}} \hookrightarrow \mathcal{F}_{\mathcal{L}} \hookrightarrow \mathcal{A} \mathcal{T}_{\mathcal{L}}
$$

Dualizing: Co-Algebra

Define the co-product $\Delta: \mathcal{A} \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{A} \mathcal{T}_{\mathcal{L}} \otimes \mathcal{A} \mathcal{T}_{\mathcal{L}}$ as $\underline{\mathbb{R} \text {-Alg }}$ morphism:

$$
\Delta\left(\tau_{1} \cdots \tau_{k}\right):=\Delta\left(\tau_{1}\right) \cdots \Delta\left(\tau_{k}\right) \text { and } \Delta(\mathbf{1}):=\mathbf{1} \otimes \mathbf{1}
$$

recursively on generators via

$$
\Delta(\tau):=\mathbf{1} \otimes \tau+\sum_{a \in \mathcal{L}}\left(B_{+}^{a} \otimes \mathrm{id}\right)\left[\Delta\left(B_{-}^{a}(\tau)\right)\right]
$$

where $B_{+}^{a}(\mathbf{1})=\bullet_{a}$ and $B_{+}^{a}\left(\tau_{1} \cdots \tau_{k}\right)=\left[\tau_{1}, \ldots, \tau_{k}\right]_{a}$. B_{-}^{a} is its inverse, which removes the root it its label is a and erases the entire tree otherwise, i.e.

$$
B_{-}^{a}\left(B_{+}^{b}\left(\tau_{1} \cdots \tau_{k}\right)\right)= \begin{cases}\tau_{1} \cdots \tau_{k} & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

Combinatorics via the Co-Product: "Topiary / Forestry"

By an admissible cut c of a tree τ we mean detaching a set of branches from the tree.

Given a cut $c \in \tau$, denote by $R_{c}(\tau) \in \mathcal{T}_{\mathcal{L}}$ the remaining subtree and by $P_{c}(\tau) \in \mathcal{F}_{L}$ the forest of detached and newly planted branches.

For example: all cuts of the forest: . $\boldsymbol{\&}$
: : . :

Explicit description of the co-product in terms of cuts

$$
\Delta(\tau)=\mathbf{1} \otimes \tau+\tau \otimes \mathbf{1}+\sum_{c \in \mathrm{C}(\tau)} R_{c}(\tau) \otimes P_{c}(\tau)
$$

Section 2

Increments

Increments

$T>0, \mathbf{V}$ a vector-space, $k \in \mathbb{N}, k \geq 1$.
$\mathcal{C}_{k}(\mathbf{V}):=\left\{f \in \mathbf{C}\left([0, T]^{k}, \mathbf{V}\right): f_{t_{1}, \ldots, t_{k}}=0\right.$ if $\left.t_{i}=t_{i+1}, 1 \leq i \leq k-1\right\}$
Space of \mathbf{k}-increments, define $\mathcal{C}_{*}=\left\{\mathcal{C}_{k}: k \in \mathbb{N}\right\}$ in $\underline{\mathbb{N} \text {-grad-Mod. }}$
The Co-Boundary map

$$
\delta: \mathcal{C}_{k} \rightarrow \mathcal{C}_{k+1} \quad g \mapsto(\delta g)_{t_{1} \cdots t_{k+1}}=\sum_{i=1}^{k+1}(-1)^{i} g_{t_{1} \cdots \hat{t}_{i} \cdots t_{k+1}}
$$

turns $\left(\mathcal{C}_{*}, \delta\right)$ into a long exact sequence.
Define the space of k-cocycles

$$
\mathcal{Z} \mathcal{C}_{k}=\operatorname{ker}(\delta) \cap \mathcal{C}_{k}
$$

Grading / Exterior Product

On $\left(\mathcal{C}_{*}, \delta\right)$ we have an exterior product:

$$
g \in \mathcal{C}_{n}, h \in \mathcal{C}_{m}
$$

then $g h \in \mathcal{C}_{m+n-1}$ defined by

$$
(g h)_{t_{1}, \ldots t_{m+n-1}}=g_{t_{1}, \ldots, t_{n}} h_{t_{n}, \ldots, t_{n+m-1}}
$$

Then δ acts as graded derivation, in particular for $f, g \in \mathcal{C}_{2}$:

$$
\delta(f g)=(\delta f) g-f(\delta g)
$$

An Important Example

Iterated integrals against smooth functions:
For $f \in \mathbf{C}^{\infty}([0, T], \mathbb{R}) \subset \mathcal{C}_{1}$, and $h \in \mathcal{C}_{2}$, let

$$
\mathcal{I}(d f \quad h)_{t s}:=\int_{s}^{t} h_{u s} d f_{u} \in \mathcal{C}_{2}
$$

Lemma

Let $h \in \mathcal{C}_{2}$ such that $\delta h_{t u s}=\sum_{i=1}^{N} h_{t u}^{1, i} h_{u s}^{2, i}$ for some $N \in \mathbb{N}$, $h^{1, i}, h^{2, i} \in \mathcal{C}_{2}$ and let $x \in \mathbf{C}^{\infty}([0, T], \mathbb{R})$. Then

$$
\delta \mathcal{I}(d x h)_{t u s}=\mathcal{I}(d x)_{t u} h_{u s}+\sum_{i=1}^{N} \mathcal{I}\left(d x h^{1, i}\right)_{t u} h_{u s}^{2, i}
$$

Iterated Integrals and Rooted Trees

Let $\mathcal{L}=\{1, \ldots, d\}$ and $x=\left\{x^{a}\right\}_{a \in \mathcal{L}} \subset \mathbf{C}^{\infty}([0, T])$.
Define the map

$$
X: \mathcal{T}_{\mathcal{L}} \rightarrow \mathbf{C}\left([0, T]^{2}\right)
$$

via its value on generators

$$
\begin{aligned}
& (t, s) \mapsto X_{t s}^{\bullet_{a}^{a}}:=\int_{s}^{t} d x_{u}^{a}=\left(\delta x^{a}\right)_{t s} \\
& (t, s) \mapsto X_{t s}^{\left[\tau_{1} \cdots \tau_{k}\right]_{a}}:=\int_{s}^{t} \prod_{i=1}^{k} X_{u s}^{\tau_{i}} d x_{u}^{a}
\end{aligned}
$$

Extension to a Morphism of Algebras

On \mathcal{C}_{2} we have an $\underline{\mathbb{R} \text {-Alg structure, with inner product }}$

$$
\circ: \mathcal{C}_{2} \otimes \mathcal{C}_{2} \rightarrow \mathcal{C}_{2} \quad f \otimes g \mapsto(f \circ g)_{t s}:=f_{t s} g_{t s}
$$

Freely adjoin unit $\mathcal{C}_{2}^{+}=\mathcal{C}_{2} \oplus e$, with $e_{s t}=1$ for all $s, t \in[0, T]$.

$$
(t, s) \mapsto X_{t s}^{\left[\tau_{1} \cdots \tau_{k}\right]_{a}}:=\int_{s}^{t} X_{u s}^{\tau_{1}} \circ \ldots \circ X^{\tau_{k}} d x_{u}^{a}
$$

And to the tensor product $\mathcal{A} \mathcal{T}_{\mathcal{L}} \otimes \mathcal{A} \mathcal{T}_{\mathcal{L}}$ via the exterior product $\mathcal{C}_{2} \otimes \mathcal{C}_{2} \rightarrow \mathcal{C}_{3}$

$$
X^{\tau \otimes \sigma} \mapsto X^{\tau} \otimes X^{\sigma} \mapsto X^{\tau} X^{\sigma}
$$

Integration on a Sub-Algebra

Recall the family of integration maps associated to
$x=\left\{x^{a}\right\}_{a \in \mathcal{L}} \subset \mathbf{C}^{\infty}([0, T])$

$$
I^{a}: \mathcal{C}_{2} \rightarrow \mathcal{C}_{2}, \quad h \mapsto \mathcal{I}\left(x^{a} h\right)
$$

As a consequence of the definitions we obtain the following fundamental relation

$$
I^{a}\left(X^{\sigma}\right)=X^{[\sigma]_{a}}=X^{B_{+}^{a}(\sigma)}
$$

Denote by $\mathcal{A}_{X} \subset \mathcal{C}_{2}^{+}$the subalgebra generated by $\left\{X^{\tau}\right\}_{\tau \in \mathcal{T}_{\mathcal{L}}}$. Then the map B_{+}^{a} represents integration on the subalgebra.

Chen's Multiplicative Property I

From the family $\left\{x^{a}\right\}_{a \in \mathcal{L}}$ define iterated integrals recursively:

$$
\mathcal{I}\left(d x^{a_{1}} d x^{a_{2}} \cdots d x^{a_{n}}\right)=\mathcal{I}\left(d x^{a_{1}} \mathcal{I}\left(d x^{a_{2}} d x^{a_{3}} \cdots d x^{a_{n}}\right)\right)
$$

The sub-algebra \mathcal{A}_{X} contains these iterated integrals, which correspond to trees of the form $\sigma=\left[\cdots\left[\bullet_{a_{n}}\right]_{a_{n-1}} \cdots\right]_{a_{1}}$.
$\mathcal{I}\left(d x^{a_{1}} \cdots d x^{a_{n}}\right)=I^{a_{1}} \cdots I^{a_{n-1}}\left(\delta x^{a_{n}}\right)=X^{B_{+}^{a_{1}} \cdots B_{+}^{a_{n-1}}\left(\bullet_{a_{n}}\right)}=X^{\left[\cdots\left[\bullet_{a_{n}}\right]_{a_{n-1}} \cdots\right]_{a_{1}}}$
From the action of δ on the integral we recover Chen's multiplicative property
$\delta X^{\sigma}=\delta \mathcal{I}\left(d x^{a_{1}} \cdots d x^{a_{n}}\right)_{s t u}=\sum_{k=1}^{n-1} \mathcal{I}\left(d x^{a_{1}} \cdots d x^{a_{k}}\right)_{s t} \mathcal{I}\left(d x^{a_{k+1}} \cdots d x^{a_{n}}\right)_{t u}$

Chen's Multiplicative Property II

Non-trivial cuts of $\sigma=\left[\cdots\left[\bullet_{a_{n}}\right]_{a_{n-1}} \cdots\right]_{a_{1}}$ break it into two pieces,

$$
\Delta^{\prime}(\sigma)=\sum_{k=1}^{n-1}\left[\cdots\left[\bullet_{a_{k}}\right]_{a_{k-1}} \cdots\right]_{a_{1}} \otimes\left[\cdots\left[\bullet_{a_{n}}\right]_{a_{n-1}} \cdots\right]_{a_{k+1}}
$$

and hence

$$
X^{\Delta^{\prime}(\sigma)}=\sum_{k=1}^{n-1} X^{\left[\cdots\left[\bullet_{a_{k}}\right]_{a_{k-1}} \cdots\right]_{a_{1}}} X^{\left[\cdots\left[\bullet_{a_{n}}\right]_{a_{n-1}} \cdots\right]_{a_{k+1}}}
$$

so that with Chen's multiplicative property

$$
\delta X^{\sigma}=X^{\Delta^{\prime}(\sigma)}
$$

for all 'sticks' σ.

Tree Multiplicative Property I

We can extend this fundamental commutativity property.

Theorem
The morphism $X: \mathcal{A} \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{C}_{2}$ satisfies the relation:

$$
\delta X^{\tau}=X^{\Delta^{\prime}(\tau)} \quad \text { for all } \tau \in \mathcal{A} \mathcal{T}_{\mathcal{L}}
$$

i.e. the following diagram commutes:

where $\Delta^{\prime}(\tau)=\Delta(\tau)-1 \otimes \tau-\tau \otimes 1$ is the reduced co-product.

Tree Multiplicative Property II

Strategy of the proof:

1. Reduce to monomials (Forests) by using linearity.
2. Induction on degree n of monomials.
3. Products of monomials, each of lower degree for which induction hypothesis holds:
Requires understanding action $\Delta^{\prime}(\tau \sigma)$ and $\delta X^{\tau \sigma}$.
4. Show relation for trees of degree n.

For the time being, we will only do step 4 (the interesting one).

Proof of Step 4.

In this step it remains to prove the relation for a single tree of degree n, i.e. $\tau=\left[\tau_{1} \cdots \tau_{k}\right]_{a}$. Write $\Delta^{\prime}\left(\tau_{1} \cdots \tau_{k}\right)=\sum_{i} \theta_{i}^{1} \otimes \theta_{i}^{2}$. Since $\left|\tau_{1} \cdots \tau_{k}\right|=n-1$, by hypothesis

$$
\delta X^{\tau_{1} \cdots \tau_{k}}=X^{\Delta^{\prime}\left(\tau_{1} \cdots \tau_{k}\right)}=\sum_{i} X^{\theta_{i}^{1}} X^{\theta_{i}^{2}}
$$

Using the action of δ on \mathcal{I} from the lemma:

$$
\begin{aligned}
\delta X^{\left[\tau_{1} \cdots \tau_{k}\right]_{a}} & =\delta \mathcal{I}\left(d x^{a} X^{\tau_{1} \cdots \tau_{k}}\right)=\delta x^{a} X^{\tau_{1} \cdots \tau_{k}}+\sum_{i} \mathcal{I}\left(d x^{a} X^{\theta_{i}^{1}}\right) X^{\theta_{i}^{2}} \\
& =X^{\bullet a} X^{\tau_{1} \cdots \tau_{k}}+\sum_{i} X^{\left[\theta_{i}^{1}\right]_{a}} X^{\theta_{i}^{2}}=X^{\bullet a \otimes \tau_{1} \cdots \tau_{k}}+\sum_{i} X^{\left[\theta_{i}^{1}\right]_{a} \otimes \theta_{i}^{2}} \\
& =X^{\Delta^{\prime}\left(\left[\tau_{1} \cdots \tau_{k}\right]_{a}\right)}
\end{aligned}
$$

The last equality can be understood in terms of cuts.

Example

In one dimension forests of degree less or equal to three are:

$$
., 8, \ldots, \ldots, \ldots, \ldots
$$

The reduced co-product acts as follows:

$$
\begin{aligned}
& \Delta^{\prime} \boldsymbol{Z}=\bullet \otimes \bullet, \quad \Delta^{\prime}(\bullet \bullet)=2 \bullet \otimes \bullet \\
& \Delta^{\prime}!=\boldsymbol{\&} \otimes \bullet+\bullet \otimes \\
& \Delta^{\prime}(\bullet \boldsymbol{g})=\bullet \otimes \bullet \bullet+\bullet \bullet \bullet+\boldsymbol{q} \otimes \bullet+\bullet \otimes \boldsymbol{g} \\
& \Delta^{\prime}\left(\bullet^{3}\right)=3 \bullet \bullet^{2} \otimes \bullet+3 \bullet \otimes \bullet \bullet^{2}, \quad \Delta^{\prime} \boldsymbol{\otimes}=\bullet \otimes \bullet \bullet+2 \boldsymbol{\bullet} \otimes \bullet
\end{aligned}
$$

Hence for example

$$
\delta X^{[\bullet \bullet],[\bullet]]}=\delta X^{\boldsymbol{\bullet}}=X^{\bullet} X^{\bullet \bullet}+2 X^{\boldsymbol{\bullet}} X^{\bullet}
$$

Section 4

Regularity of X

Topologizing 2- and 3-Increments

Let $\mu>0$. For $f \in \mathcal{C}_{2}$ set

$$
\|f\|_{\mu}:=\sup _{s \neq t, s, t \in[0, T]}\left\{\frac{f_{s t}}{|s-t|^{\mu}}\right\}
$$

and for $h \in \mathcal{C}_{3}$ we set

$$
\|h\|_{\gamma, \rho}:=\sup _{s, u, t \in[0, T]}\left\{\frac{\left|h_{t u s}\right|}{|u-s|^{\gamma}|t-u|^{\rho}}\right\}
$$

$$
\|h\|_{\mu}:=\inf _{0<\rho_{i}<\mu}\left\{\sum_{i=1}^{N}\left\|h_{i}\right\|_{\rho_{i}, \mu-\rho_{i}}: h=\sum_{i=1}^{N} h_{i}, h_{i} \in \mathcal{C}_{3}, N \in \mathbb{N}\right\} .
$$

Define $\mathcal{C}_{2}^{\mu}:=\left\{f \in \mathcal{C}_{2}:\|f\|_{\mu}<\infty\right\}, \mathcal{C}_{3}^{\mu}:=\left\{f \in \mathcal{C}_{3}:\|f\|_{\mu}<\infty\right\}$, and finally $\mathcal{C}_{k}^{1+}=\cup_{\mu>1} \mathcal{C}_{k}^{\mu}$.

The Splitting-Map of the Short Exact Sequence

Theorem (The Λ-map)

There exists a unique linear map $\wedge: \mathcal{Z C}_{3}^{1+} \rightarrow \mathcal{C}_{2}^{1+}$

$$
\delta \Lambda=\mathrm{id}_{\mathcal{Z} \mathcal{C}_{3}}
$$

For any $\mu>1$, this map is continuous from $\mathcal{Z C}_{3}^{\mu}$ to \mathcal{C}_{2}^{μ}

$$
\|\Lambda h\|_{\mu} \leq \frac{1}{2^{\mu}-2}\|h\|_{\mu}, \quad h \in \mathcal{Z C}_{3}^{\mu}
$$

The map provides a splitting that we will repeatedly use.

$$
0 \longrightarrow \mathcal{Z C}_{2}^{1+} \stackrel{\text { incl }}{\longrightarrow} \mathcal{C}_{2}^{1+} \underset{\Lambda}{\stackrel{\delta_{2 \rightarrow 3}}{\kappa}} \mathcal{Z C}_{3}^{1+} \longrightarrow 0
$$

An Axiomatic Definition of the Integral

We can abstract the previous constructions by distilling only the properties of the integration maps $\left\{I^{a}: \mathcal{C}_{2} \rightarrow \mathcal{C}_{2}\right\}$ that we needed.

Definition

Call a linear map I: $\mathcal{D}_{I} \rightarrow \mathcal{D}_{\text {I }}$ on a sub-algebra $\mathcal{D}_{\text {I }} \subset \mathcal{C}_{2}^{+}$containing the unit $e \in \mathcal{C}_{2}$ an integral if is satisfies the following properties.

1. $I(h f)_{t s}=I(h)_{t s} f_{s}, \quad$ for all $h \in \mathcal{D}_{l}, f \in \mathcal{C}_{1}$ where $(h f)_{t s}=h_{t s} f_{s}$,
2. $\delta I(h)_{t u s}=I(e)_{t u} h_{u s}+\sum_{i=1}^{N} I\left(h^{1, i}\right)_{t u} h_{u s}^{2, i}$
whenever $h \in \mathcal{D}_{I}$ and $\delta h_{t u s}=\sum_{i=1}^{N} h_{t u}^{1, i} h_{u s}^{2, i}$ for some $n \in$ $\mathbb{N}, h^{1, i} \in \mathcal{D}_{l}$.

With this definition we can construct a homomorphism $X: \mathcal{A} \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{C}_{2}$ as before satisfying the commutativity relation.

Regularity and Branched Rough Paths

Given $\gamma \in(0,1]$ define q_{γ} on trees as

$$
q_{\gamma}(\tau)= \begin{cases}1 & \text { if }|\tau| \leq 1 / \gamma \\ \frac{1}{2^{\gamma|\tau|}-2} \sum q_{\gamma}\left(\tau^{(1)}\right) q_{\gamma}\left(\tau^{(2)}\right) & \text { if }|\tau|>1 / \gamma\end{cases}
$$

The splitting stems from the the reduced co-product. On forests $\tau=\tau_{1} \cdots \tau_{k}$, set $q_{\gamma}(\tau)=q_{\gamma}\left(\tau_{1}\right) \cdots q_{\gamma}\left(\tau_{k}\right)$.

Definition

Let $\gamma>0$. We call a morphism of algebras $X: \mathcal{A} \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{C}_{2}$ a γ-branched rough path $(\gamma$-BRP $)$ if it satisfies $\delta X=X^{\Delta^{\prime}}$ and

$$
\left\|X^{\tau}\right\|_{\gamma|\tau|} \leq B A^{|\tau|} q_{\gamma}(\tau), \quad \text { for all } \tau \in \mathcal{F}_{\mathcal{L}}
$$

and constants $B \in[0,1]$ and $A \geq 0$.

Extension from a Finite Set of Trees I

Theorem

Let $X: \mathcal{A}_{n} \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{C}_{2}$ be a given morphism satisfying $\delta X=X^{\Delta^{\prime}}$ and suppose that there exist $\gamma>0, A \geq 0, B \in[0,1]$ such that

$$
\left\|X^{\tau}\right\|_{\gamma|\tau|} \leq B A^{|\tau|} q_{\gamma}(\tau) \quad \text { for all } \tau \in \mathcal{T}_{\mathcal{L}}^{n}
$$

with $\gamma(n+1)>1$. Then there exists a unique extension of X to $\mathcal{A} \mathcal{T}_{\mathcal{L}}$ as a γ-branched rough path with the same bounds.

Extension from a Finite Set of Trees II

Outline of Proof: Via Induction and using the diagram below.

1. Show that $X^{\Delta^{\prime}}$ maps to $\mathcal{Z C}_{3}^{|\tau| \gamma}$ for "large trees" τ.
2. Use continuity of Λ to show bounds for X^{τ} via splitting of short exact sequence.

Extension from a Finite Set of Trees III

Sketch of Proof.
Assume that we have a bounded extension $X: \mathcal{A}_{m} \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{C}_{2}$
satisfying commutativity. (True for $n=m$). For the induction step:
Since $\gamma m \geq \gamma(n+1)>1$, we have for $|\tau|=m$

$$
\left\|X^{\Delta^{\prime}(\tau)}\right\|_{m \gamma} \leq \sum_{i}^{\prime}\left\|X^{\tau_{i}^{(1)} \otimes \tau_{i}^{(2)}}\right\|_{m \gamma} \leq \sum_{i}^{\prime}\left\|X^{\tau_{i}^{(1)}}\right\|_{\left|\tau_{i}^{(1)}\right| \gamma}\left\|X^{\tau_{i}^{(2)}}\right\|_{\left|\tau_{i}^{(2)}\right| \gamma}<\infty
$$

and
$\delta X^{\Delta^{\prime}(\tau)}=\sum_{i}^{\prime}\left[\delta X_{i}^{\tau_{i}^{(1)}}\right] X^{\tau_{i}^{(2)}}-X^{\tau_{i}^{(1)}}\left[\delta X_{i}^{\tau_{i}^{(2)}}\right]=\sum_{i}^{\prime} X^{\left(\mathrm{id} \otimes \Delta^{\prime}-\Delta^{\prime} \otimes \mathrm{id}\right) \Delta^{\prime}(\tau)}=0$
Thus $X^{\Delta^{\prime}(\tau)} \in \mathcal{Z C}_{3} \cap \mathcal{C}_{3}^{m \gamma}=\mathcal{Z C}_{3}^{m \gamma}$. Now using continuity of Λ and splitting to get $\left\|X^{\tau}\right\|_{\gamma|\tau|}=\left\|\Lambda X^{\Delta^{\prime}(\tau)}\right\|_{\gamma|\tau|} \leq B^{2} A^{|\tau|} q_{\gamma}(\tau)$.

Section 5

Weakly Controlled Paths

We want to give a sensible notion of solutions of rough differential equations

$$
\delta y=\sum_{a \in \mathcal{L}} I^{a}\left(f_{a}(y)\right), \quad y_{0}=\eta \in \mathbb{R}^{k}
$$

where I^{a} is a family of integration maps giving rise to a $\gamma-B R P$, f_{a} is a collection of (sufficiently regular) vector-fields.

Definition

Let X be a γ-BRP and n the largest integer such that $n \gamma \leq 1$. For $\kappa \in(1 /(n+1), \gamma]$, the path $y:[0, T] \rightarrow \mathbb{R}$ is a κ-weakly controlled by X if there exists $\left\{y^{\tau} \in \mathcal{C}_{1}^{|\tau| \kappa}\right\}_{\tau \in \mathcal{F}_{\mathcal{L}}}{ }^{n-1}$ and remainders $\left\{y^{\sharp} \in \mathcal{C}_{2}^{n \kappa}, y^{\tau, \sharp} \in \mathcal{C}_{2}^{(n-|\tau|) \kappa}\right\}_{\tau \in \mathcal{F}_{\mathcal{L}}}{ }^{n-1}$ such that

$$
\begin{gather*}
\delta y=\sum_{\tau \in \mathcal{F}^{\mathcal{L}^{n-1}}} X^{\tau} y^{\tau}+y^{\sharp} \tag{1}\\
\delta y^{\tau}=\sum_{\sigma \in \mathcal{F}_{\mathcal{L}}{ }^{n-1}} \sum_{\rho} c^{\prime}(\sigma, \tau, \rho) X^{\rho} y^{\sigma}+y^{\tau, \sharp} \tag{2}
\end{gather*}
$$

for $\tau \in \mathcal{F}_{\mathcal{L}}{ }^{n-1}$, with $\delta y^{\tau}=y^{\tau, \#}$ when $|\tau|=n-1$. Let $\mathcal{Q}_{\kappa}(X)$ be the vector space of κ-weakly controlled paths with norm $\|\cdot\|_{\mathcal{Q}, \kappa}$

$$
\|y\|_{\mathcal{Q}, \kappa}=\left|y_{0}\right|+\left\|y^{\sharp}\right\|_{n \kappa}+\sum_{\tau \in \mathcal{F}_{\mathcal{L}}}\left\|y^{\tau, \sharp}\right\|_{\kappa(n-|\tau|)} .
$$

Example

Let us give an example with $d=1$ of the structure of a controlled path. Take $\gamma>1 / 5$ so that $n=4$. Then $y \in \mathcal{Q}_{\gamma}$ corresponds to the set of paths

$$
y \in \mathcal{C}_{1}^{\gamma}, \quad y^{\bullet} \in \mathcal{C}_{1}^{\gamma}, \quad y^{\boldsymbol{\ell}}, y \bullet \in \mathcal{C}_{1}^{2 \gamma}, \quad y^{\boldsymbol{\ell}}, y^{\boldsymbol{\ell}} \bullet y^{\boldsymbol{\vartheta}}, y^{\boldsymbol{\ell}}, y \bullet \bullet \in \mathcal{C}_{1}^{3 \gamma}
$$

Example (Continued)

And the following algebraic relations hold

$$
\begin{aligned}
& +X \cdot \bullet \cdot y \cdot \cdots+X^{\vdots} y^{\ddagger}+y^{\sharp}
\end{aligned}
$$

$$
\begin{aligned}
& \delta y^{\boldsymbol{\ell}}=X^{\bullet}\left(y^{\boldsymbol{\ell} \bullet}+2 y^{\boldsymbol{\imath}}+y^{\boldsymbol{\delta}}\right)+y^{\boldsymbol{q}}, \# \\
& \delta y^{\bullet \bullet}=X^{\bullet}\left(y^{\boldsymbol{\imath} \bullet}+y^{\bullet \bullet \bullet}\right)+y^{\bullet \bullet,}, \#
\end{aligned}
$$

$$
\begin{aligned}
& \delta y \bullet \bullet=y \bullet \bullet \bullet \# \\
& \delta y^{\text {§ }}=y^{\text {\$ }} \text {.\# }
\end{aligned}
$$

with remainders of orders

$$
y^{\sharp} \in \mathcal{C}_{2}^{4 \gamma}, \quad y^{\bullet, \sharp} \in \mathcal{C}_{2}^{3 \gamma}, \quad y^{\boldsymbol{\mathbf { ~ }} \sharp \sharp}, y^{\bullet \bullet, \sharp} \in \mathcal{C}_{2}^{2 \gamma} \quad y^{\boldsymbol{\bullet}}, \sharp, y^{\boldsymbol{\ell} \bullet \sharp}, y^{\bullet \bullet \bullet}, y^{\boldsymbol{\$}, \sharp} \in \mathcal{C}_{2}^{\gamma} .
$$

Properties of Weakly Controlled Paths

- An element in $\mathcal{Q}_{\kappa}(X)$ is a path together with all its increments $\left\{y^{\tau}\right\}$ and an expansion in terms of X with remainder y^{\sharp}.
- Coefficients of this expansion have similar expansions of lower degree.
- The space $\mathcal{Q}_{\kappa}(X)$ can be endowed with the structure of a \mathbb{R} - Algebra.
- It is closed under composition with sufficiently regular functions.

Closedness under composition with regular functions

Let $\mathcal{L}_{1}=\{1, \ldots, k\}$ and $\mathcal{I} \mathcal{L}_{1}=\cup_{m \geq 0} \mathcal{L}_{1}^{m}$ the set of multiindices, with $|\bar{b}|=n$ whenever $\bar{b} \in \mathcal{L}_{1}^{n}$.

Lemma

Let n the largest integer such that $n \gamma \leq 1, \varphi \in C_{b}^{n}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ and $y \in \mathcal{Q}_{k}\left(X ; \mathbb{R}^{k}\right)$, then $z_{t}=\varphi\left(y_{t}\right)$ is a weakly controlled path, $z \in \mathcal{Q}_{\kappa}(X ; \mathbb{R})$ where its coefficients are given by

$$
z^{\tau}=\sum_{\substack{ \\m=1}}^{n-1} \sum_{\bar{b} \in \mathcal{I} \mathcal{L}_{1}}^{|\bar{b}|=m} \left\lvert\, ~ \frac{\varphi_{\bar{b}}(y)}{m!} \sum_{\substack{\tau_{1}, \ldots, \tau_{m} \in \mathcal{F}_{1}, \mathcal{L}_{1}^{n-1} \\ \tau_{1}, \tau_{m}=\tau}} y^{\tau_{1}, b_{1}} \cdots y^{\tau_{m}, b_{m}}\right., \quad \tau \in \mathcal{F}_{\mathcal{L}}{ }^{n-1}
$$

(note that all the sums are finite).

Sketch of Proof.
Taylor expand φ to get $(\delta \varphi)_{\xi^{\prime} \xi}$:

$$
\varphi\left(\xi^{\prime}\right)-\varphi(\xi)=\sum_{m=1}^{n-1} \sum_{\substack{\bar{b} \in \mathcal{I} \mathcal{L}_{1} \\|\bar{b}|=m}} \frac{\varphi_{\bar{b}}(\xi)}{m!}\left(\xi^{\prime}-\xi\right)^{\bar{b}}+O\left(\left|\xi^{\prime}-\xi\right|^{n}\right)
$$

thus

$$
\begin{aligned}
\delta z_{t s} & =\sum_{m=1}^{n-1} \sum_{\substack{\bar{b} \in \mathcal{I} \mathcal{L}_{1} \\
|\bar{b}|=m}} \frac{\varphi_{\bar{b}}\left(y_{s}\right)}{m!}\left(\delta y_{t s}\right)^{\bar{b}}+O\left(|t-s|^{n \kappa}\right) \\
& =\sum_{m=1}^{n-1} \sum_{\tau^{1} \ldots \tau^{m} \in \mathcal{F}_{\mathcal{L}}^{n-1}} \sum_{\substack{\bar{b} \in \mathcal{I} \mathcal{L}_{1} \\
|\bar{b}|=m}} \frac{\varphi_{\bar{b}}\left(y_{s}\right)}{m!} y_{s}^{\tau^{1} b_{1}} \cdots y_{s}^{\tau^{m} b_{m}} X_{t s}^{\tau^{1} \cdots \tau^{m}}+O\left(|t-s|^{n \kappa}\right)
\end{aligned}
$$

Also every z^{τ} has to satisfy the δ-equations: details skipped.

Extending the Integration maps

Recall the family of integrals $\left\{I^{a}: \mathcal{D}_{I} \rightarrow \mathcal{D}_{l}\right\}_{a}$ (either defined axiomatically or as integration against smooth functions).

We can extend their domain to \mathcal{C}_{1}, viz.
Embed $f \in \mathcal{C}_{1} \mapsto f_{s} e_{s t} \in \mathcal{C}_{2}^{+}$, then set

$$
I(f)=I(f e)
$$

and since $f e=e f+\delta f$ we have

$$
I(f)=I(e) f+I(\delta f)
$$

for any $f \in \mathcal{C}_{1}$ such that $\delta f \in \mathcal{D}_{2}$

Theorem

The integral maps $\left\{I^{a}\right\}_{a \in \mathcal{L}}$ can be extended to maps $I^{a}: \mathcal{Q}_{\kappa}(X) \rightarrow \delta \mathcal{Q}_{\kappa}(X)$. If $y \in \mathcal{Q}_{\kappa}(X)$ then $\delta z=I^{a}(y)$ is such that

$$
\begin{equation*}
\delta z=X^{\bullet} z^{\bullet} a+\sum_{\tau \in \mathcal{T}_{\mathcal{L}}^{n}} X^{\tau} z^{\tau}+z^{b} \tag{3}
\end{equation*}
$$

where $z^{\bullet a}=y, z^{[\tau]_{a}}=y^{\tau}$ and zero otherwise. Moreover

$$
z^{b}=\Lambda\left[\sum_{\tau \in \mathcal{F}_{\mathcal{L}}{ }^{n-1} \cup\{\mathbf{1}\}} X^{B_{a}^{+}(\tau)} y^{\tau, \sharp}\right] \in \mathcal{C}_{2}^{\kappa(n+1)} .
$$

Proof I

Recall $I^{a}(y)=I^{a}(e) y+I^{a}(\delta y)$, hence we are done once we can show that $I^{a}(\delta y)$ is well-defined.

Since $y \in \mathcal{Q}_{k}$, we have the expansion

$$
\delta y=\sum_{\tau \in \mathcal{F}_{\mathcal{L}}{ }^{n-1}} X^{\tau} y^{\tau}+y^{\sharp}
$$

$$
I^{a}\left(\sum_{\tau \in \mathcal{F}_{\mathcal{L}}{ }^{n-1}} X^{\tau} y^{\tau}\right)=\sum_{\tau \in \mathcal{F}_{\mathcal{L}^{n-1}}} I^{a}\left(X^{\tau}\right) y^{\tau}=\sum_{\tau \in \mathcal{F}_{\mathcal{L}}{ }^{n-1}} X^{[\tau]_{\mathrm{a}}} y^{\tau}=I^{a}\left(\delta y-y^{\sharp}\right)
$$

Hence we will be done if we can show that $I^{a}\left(y^{\sharp}\right)$ is well defined.

Proof II

Strategy: show that $\delta I^{a}\left(y^{\sharp}\right) \in \mathcal{Z C} \cap \mathcal{C}_{3}^{(n+1) \kappa} \subset \mathcal{Z C}_{3}^{1+}$ and hence in the domain of Λ : uses axiomatic properties of I^{a} via

$$
\delta I^{a}\left(y^{\sharp}\right)=I^{a}(e) y^{\sharp}+\sum_{\tau \in \mathcal{F}^{n}} I^{a-1}\left(X^{\tau}\right) y^{\tau, \sharp}=X^{\bullet} y^{\sharp}+\sum_{\tau \in \mathcal{F}_{\mathcal{L}^{n-1}}} x^{[\tau]_{a}} y^{\tau, \sharp}
$$

R.H.S. are well defined and well behaved objects. We need a technical lemma to calculate $\delta y^{\tau, \sharp}$, norm-estimates and properties of derivation.

Now set $I^{a}\left(y^{\sharp}\right)=\Lambda\left[X^{\bullet}{ }^{\bullet} y^{\sharp}+\sum_{\tau \in \mathcal{F}_{\mathcal{L}^{n-1}}} X{ }^{[\tau]_{a}} y^{\tau, \sharp}\right]$

Proof III

Now combine everything:

$$
I^{a}(y)=I^{a}(e) y+I^{a}(\delta y)=X^{\bullet a} y+I^{a}\left(\sum_{\tau \in \mathcal{F}_{\mathcal{L}}} X^{\tau-1} y^{\tau}\right)+\Lambda[\ldots]
$$

but this is just

$$
I^{a}(y)=X^{\bullet_{a}} y+\sum_{\tau \in \mathcal{F}_{\mathcal{L}}} X^{[\tau]_{a}} y^{\tau}+\Lambda[\ldots]
$$

with $\Lambda[\ldots] \in \mathcal{C}_{2}^{\kappa(n+1)}$, as claimed.

Rough Differential Equations I

Let $\left\{f_{a}\right\}_{a=1, \ldots d} \subset \mathbf{C B}^{n}\left(\mathbb{R}^{k} ; \mathbb{R}^{k}\right)$ be vector-fields, where n is the largest integer such that $n \gamma \leq 1$. Given integral maps I^{a} which defining a γ-BRP X the rough differential equation

$$
\begin{equation*}
\delta y=\sum_{a \in \mathcal{L}} I^{a}\left(f_{a}(y)\right), \quad y_{0}=\eta \in \mathbb{R}^{k} \tag{4}
\end{equation*}
$$

in the time interval $[0, T]$.

- Previous lemma showed that $f_{a}(y)$ is a κ-weakly controlled, whenever y is.
- Previous theorem showed that we can integrate κ-weakly controlled paths against $I^{\text {a }}$, obtaining a κ weakly controlled 2-increment.
Thus it makes sense to speak of a solution $y \in \mathcal{Q}_{\gamma}\left(X ; \mathbb{R}^{k}\right)$ via a fixed point problem in $\mathcal{Q}_{\gamma}\left(X ; \mathcal{R}^{k}\right)$ of

$$
\delta \Gamma(y)=\sum_{a \in \mathcal{L}} I^{a}\left(f_{a}(y)\right), \quad \Gamma(y)_{0}=\eta
$$

Rough Differential Equations II

Theorem
If $\left\{f_{a}\right\}_{a \in \mathcal{L}}$ is a family of C_{b}^{n} vectorfields then the rough differential equation δy has a global solution $y \in \mathcal{Q}_{\gamma}\left(X ; \mathcal{R}^{k}\right)$ for any initial condition $\eta \in \mathbb{R}^{k}$.
If the vectorfields are C_{b}^{n+1} the solution $\Phi(\eta, X) \in \mathcal{Q}_{\gamma}\left(X ; \mathbb{R}^{k}\right)$ is unique and the map $\Phi: \mathbb{R}^{k} \times \Omega_{\mathcal{T}_{\mathcal{L}}}^{\gamma} \rightarrow \mathcal{Q}_{\gamma}\left(X ; \mathbb{R}^{k}\right)$ is Lipschitz in any finite interval $[0, T]$.

Summary

- By endowing the set of rooted decorated trees with algebraic structure, we obtained a multiplicative property.
- It uses the combinations of trees and algebraic integration theory to define path wise integration against integrands with roughness $\gamma>0$.
- This theory can be used to study controlled and rough differential equations.

