(
2	

ocrements

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths 00000000 0000 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ramification of Rough Paths after Massimiliano Gubinelli

presented by Robert A. Crowell

University of Bonn

September 11 and 15, 2016

Prepared for the Hausdorff Summer School Paraproducts and Analysis of Rough Paths Increments 0000 000

Trees

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths 00000000 0000 00

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Section 1

Trees, Gardening and Forestry

Increments 0000 000

Trees

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths 00000000 0000 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Decorated Rooted Trees

A **rooted tree** is a finite, cycle-free graph with a distinguished node (its root).

Let \mathcal{L} be a finite set of labels. A \mathcal{L} -decorated tree is a rooted tree together with an association of a label to every vertex.

For example $\mathcal{L} = \{1, 2, 3\}$:

$$\bullet_2$$
 \bullet_1^3 $\bullet_2^2 \bullet_1^1$ \bullet_1^2 $\bullet_1^3 \bullet_1^1$ $\bullet_1^1 \bullet_2^1$

Trees

ncrements

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths 00000000 0000 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cultivating Trees

We have a recursive way of growing rooted, labeled trees.

Given τ_1, \ldots, τ_k trees and a label $a \in \mathcal{L}$, let

$$au = [au_1, \cdots, au_k]_a$$

be the tree obtained by attaching τ_1, \cdots, τ_k to a new root *a*.

Observe that we can grow any tree using the set of labeled vertices $\{\bullet_a\}_{a\in\mathcal{L}}$ and the map $[-]_-$.

$$[\bullet] = \fbox{} [\bullet, [\bullet]] = \H{}$$

00 00

Trees

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths

Tree Polynomial Algebra

Let $\mathcal{T}_{\!\mathcal{L}}$ denote the set of decorated trees and 1 the empty tree.

We can define the tree polynomial algebra

 $\mathcal{AT}_{\mathcal{L}} = \langle \mathcal{T}_{\mathcal{L}} \cup \{1\} \rangle_{\mathbb{R}-\mathsf{Alg}}$

Elements are finite formal sums of formal monomials with coefficients in $\ensuremath{\mathbb{R}}.$

Explicit construction: $\mathcal{F}_{\mathcal{L}} = \{\tau_1 \cdots \tau_k : n \in \mathbb{N}_0, \tau_i \in \mathcal{T}_{\mathcal{L}}\}$ is the set of labeled **forests**. Then $\operatorname{span}_{\mathbb{R}}\{\mathcal{F}_{\mathcal{L}}\}$ is an object in <u>R-Mod</u>, on which we declare **inner multiplication** of polynomials to obtain an algebra.

rees	Increments	Multiplicative Property	Regularity	Controlled Paths
00 00	0000	00	0000	00000000
				00

Grading

Graduation $g(\tau_1 \cdots \tau_k) = |\tau_1| + \ldots + |\tau_k|$ with $|\tau_i|$ being the number of vertices of the tree (the empty has zero vertices).

Setting \mathcal{F}_n the set of forests of degree up to n:

$$\mathcal{A}_n \mathcal{T}_{\mathcal{L}} = \langle \mathcal{F}_n \rangle_{\underline{\mathbb{R}} - \mathsf{Mod}}$$

and

Ti O

$$\mathcal{AT}_{\mathcal{L}} = \prod_{n=0}^{\infty} \mathcal{A}_n \mathcal{T}_{\mathcal{L}}$$

We have the inclusions

$$\mathcal{T}_{\mathcal{L}} \hookrightarrow \mathcal{F}_{\mathcal{L}} \hookrightarrow \mathcal{A}\mathcal{T}_{\mathcal{L}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Increments

Trees

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Dualizing: Co-Algebra Define the co-product $\Delta : \mathcal{AT}_{\mathcal{L}} \to \mathcal{AT}_{\mathcal{L}} \otimes \mathcal{AT}_{\mathcal{L}}$ as <u>R-Alg</u> morphism:

 $\Delta(au_1\cdots au_k):=\Delta(au_1)\cdots\Delta(au_k)$ and $\Delta(\mathbf{1}):=\mathbf{1}\otimes\mathbf{1}$

recursively on generators via

$$\Delta(au) := \mathbf{1} \otimes au + \sum_{\mathbf{a} \in \mathcal{L}} (B^{\mathbf{a}}_+ \otimes \operatorname{id})[\Delta(B^{\mathbf{a}}_-(au))]$$

where $B^a_+(1) = \bullet_a$ and $B^a_+(\tau_1 \cdots \tau_k) = [\tau_1, \ldots, \tau_k]_a$. B^a_- is its inverse, which removes the root it its label is *a* and erases the entire tree otherwise, *i.e.*

$$B^{a}_{-}(B^{b}_{+}(\tau_{1}\cdots\tau_{k})) = egin{cases} au_{1}\cdots au_{k} & ext{if } a=b, \ 0 & ext{otherwise} \end{cases}$$

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00	0000	
0000	000	0000	0000	0000
				00

Combinatorics via the Co-Product: "Topiary / Forestry"

By an **admissible cut** c of a tree τ we mean detaching a set of branches from the tree.

Given a cut $c \in \tau$, denote by $R_c(\tau) \in \mathcal{T}_{\mathcal{L}}$ the remaining subtree and by $P_c(\tau) \in \mathcal{F}_L$ the forest of detached and newly planted branches.

For example: all cuts of the forest:

I. I. I. I. I. I.

Explicit description of the co-product in terms of cuts

$$\Delta(\tau) = \mathbf{1} \otimes \tau + \tau \otimes \mathbf{1} + \sum_{c \in \mathsf{C}(\tau)} \mathsf{R}_c(\tau) \otimes \mathsf{P}_c(\tau)$$

Trees	Increments	Multiplicative Property	Regularity	Controlled F
000	0000 000	00 0000	0000	0000000 0000 00

Section 2

Increments

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	000 000	00 0000	0000	00000000 0000 00

Increments

$$\mathcal{T} > 0$$
, **V** a vector-space, $k \in \mathbb{N}$, $k \geq 1$.

$${\mathcal C}_k({\mathbf V}):=\left\{f\in {\mathbf C}([0,T]^k,{\mathbf V})\ :\ f_{t_1,...,t_k}=0 ext{ if } t_i=t_{i+1},\ 1\leq i\leq k{-}1
ight\}$$

Space of **k-increments**, define $C_* = \{C_k : k \in \mathbb{N}\}$ in <u>N-grad-Mod</u>.

The Co-Boundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \quad g \mapsto (\delta g)_{t_1 \cdots t_{k+1}} = \sum_{i=1}^{k+1} (-1)^i g_{t_1 \cdots \hat{t}_i \cdots t_{k+1}}$$

turns (\mathcal{C}_*, δ) into a long exact sequence.

Define the space of *k*-cocycles

$$\mathcal{ZC}_k = \ker(\delta) \cap \mathcal{C}_k.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Increments

Regularity 0000 0000 Controlled Paths 00000000 0000 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Grading / Exterior Product

On (\mathcal{C}_*, δ) we have an **exterior product**:

 $g \in C_n, h \in C_m$

then $gh \in \mathcal{C}_{m+n-1}$ defined by

$$(gh)_{t_1,...,t_{m+n-1}} = g_{t_1,...,t_n}h_{t_n,...,t_{n+m-1}}$$

Then δ acts as **graded derivation**, in particular for $f, g \in C_2$:

$$\delta(fg) = (\delta f)g - f(\delta g)$$

000 0000 Increments

Multiplicative Property 00 0000 Regularity 0000 0000 Controlled Paths

An Important Example

Iterated integrals against smooth functions:

For $f \in \mathbf{C}^{\infty}([0, T], \mathbb{R}) \subset \mathcal{C}_1$, and $h \in \mathcal{C}_2$, let

$$\mathcal{I}(df \ h)_{ts} := \int_{s}^{t} h_{us} df_{u} \in \mathcal{C}_{2}$$

Lemma

Let $h \in C_2$ such that $\delta h_{tus} = \sum_{i=1}^{N} h_{tu}^{1,i} h_{us}^{2,i}$ for some $N \in \mathbb{N}$, $h^{1,i}, h^{2,i} \in C_2$ and let $x \in \mathbf{C}^{\infty}([0, T], \mathbb{R})$. Then

$$\delta \mathcal{I}(dx \ h)_{tus} = \mathcal{I}(dx)_{tu}h_{us} + \sum_{i=1}^{N} \mathcal{I}(dx \ h^{1,i})_{tu}h^{2,i}_{us}$$

Increments

Regularity 0000 0000 Controlled Paths 00000000 0000 00

Iterated Integrals and Rooted Trees

Let
$$\mathcal{L} = \{1, \dots, d\}$$
 and $x = \{x^a\}_{a \in \mathcal{L}} \subset \mathbf{C}^{\infty}([0, T]).$

Define the map

$$X:\mathcal{T}_{\mathcal{L}}
ightarrow \mathbf{C}([0,T]^2)$$

via its value on generators

$$(t,s) \mapsto X_{ts}^{\bullet_a} := \int_s^t dx_u^a = (\delta x^a)_{ts},$$
$$(t,s) \mapsto X_{ts}^{[\tau_1 \cdots \tau_k]_a} := \int_s^t \prod_{i=1}^k X_{us}^{\tau_i} dx_u^a$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

1 rees 000 0000

Increments 0000 000 Multiplicative Property 00 0000 Regularity

Controlled Paths 00000000 0000 00

Extension to a Morphism of Algebras

On \mathcal{C}_2 we have an $\mathbb{R}\text{-}\mathsf{Alg}$ structure, with inner product

$$\circ: \mathcal{C}_2 \otimes \mathcal{C}_2 \to \mathcal{C}_2 \quad f \otimes g \mapsto (f \circ g)_{ts} := f_{ts}g_{ts}$$

Freely adjoin unit $C_2^+ = C_2 \oplus e$, with $e_{st} = 1$ for all $s, t \in [0, T]$.

Extend X to a morphism of $\underline{\mathbb{R}}$ -Alg: $X : \mathcal{AT}_{\mathcal{L}} \to \mathcal{C}_2^+$.

$$(t,s)\mapsto X_{ts}^{[au_1\cdots au_k]_a}:=\int_s^t X_{us}^{ au_1}\circ\ldots\circ X^{ au_k}dx_u^a.$$

And to the tensor product $\mathcal{AT}_{\mathcal{L}} \otimes \mathcal{AT}_{\mathcal{L}}$ via the exterior product $\mathcal{C}_2 \otimes \mathcal{C}_2 \rightarrow \mathcal{C}_3$ $X^{\tau \otimes \sigma} \mapsto X^{\tau} \otimes X^{\sigma} \mapsto X^{\tau} X^{\sigma}$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ → ◆○ ◆

Increments

Regularity 0000 0000 Controlled Paths

Integration on a Sub-Algebra

Recall the family of integration maps associated to $x = \{x^a\}_{a \in \mathcal{L}} \subset \mathbf{C}^{\infty}([0, T])$

$$I^a: \mathcal{C}_2 o \mathcal{C}_2, \quad h \mapsto \mathcal{I}(x^a \ h)$$

As a consequence of the definitions we obtain the following fundamental relation

$$I^{a}(X^{\sigma}) = X^{[\sigma]_{a}} = X^{B^{a}_{+}(\sigma)}$$

Denote by $\mathcal{A}_X \subset \mathcal{C}_2^+$ the subalgebra generated by $\{X^{\tau}\}_{\tau \in \mathcal{T}_{\mathcal{L}}}$. Then the map B_+^a represents integration on the subalgebra.

Increments 0000 000

Multiplicative Property • 0 • 0 000 Regularity 0000 0000 Controlled Paths

Chen's Multiplicative Property I

From the family $\{x^a\}_{a \in \mathcal{L}}$ define **iterated integrals** recursively:

$$\mathcal{I}(dx^{a_1} dx^{a_2} \cdots dx^{a_n}) = \mathcal{I}(dx^{a_1} \mathcal{I}(dx^{a_2} dx^{a_3} \cdots dx^{a_n}))$$

The sub-algebra \mathcal{A}_X contains these iterated integrals, which correspond to trees of the form $\sigma = [\cdots [\bullet_{a_n}]_{a_{n-1}} \cdots]_{a_1}$.

$$\mathcal{I}(dx^{a_1}\cdots dx^{a_n}) = I^{a_1}\cdots I^{a_{n-1}}(\delta x^{a_n}) = X^{B_+^{a_1}\cdots B_+^{a_{n-1}}(\bullet_{a_n})} = X^{[\cdots [\bullet_{a_n}]_{a_{n-1}}\cdots]_{a_1}}$$

From the action of δ on the integral we recover **Chen's** multiplicative property

$$\delta X^{\sigma} = \delta \mathcal{I}(dx^{a_1} \cdots dx^{a_n})_{stu} = \sum_{k=1}^{n-1} \mathcal{I}(dx^{a_1} \cdots dx^{a_k})_{st} \mathcal{I}(dx^{a_{k+1}} \cdots dx^{a_n})_{tu}$$

Incremer 0000 000

Regularity

Controlled Paths 00000000 0000 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Chen's Multiplicative Property II

Non-trivial cuts of $\sigma = [\cdots [\bullet_{a_n}]_{a_{n-1}} \cdots]_{a_1}$ break it into two pieces,

$$\Delta'(\sigma) = \sum_{k=1}^{n-1} [\cdots [\bullet_{a_k}]_{a_{k-1}} \cdots]_{a_1} \otimes [\cdots [\bullet_{a_n}]_{a_{n-1}} \cdots]_{a_{k+1}}$$

and hence

$$X^{\Delta'(\sigma)} = \sum_{k=1}^{n-1} X^{[\dots[\bullet_{a_k}]_{a_{k-1}}\dots]_{a_1}} X^{[\dots[\bullet_{a_n}]_{a_{n-1}}\dots]_{a_{k+1}}}$$

so that with Chen's multiplicative property

$$\delta X^{\sigma} = X^{\Delta'(\sigma)}$$

for all 'sticks' σ .

000

ncrements 0000 000 Multiplicative Property

Regularity 0000 0000 Controlled Paths

Tree Multiplicative Property I

We can extend this fundamental commutativity property.

Theorem

The morphism $X:\mathcal{AT}_{\mathcal{L}}\rightarrow \mathcal{C}_2$ satisfies the relation:

$$\delta X^ au = X^{\Delta'(au)}$$
 for all $au \in \mathcal{AT}_\mathcal{L},$

i.e. the following diagram commutes:

where $\Delta'(\tau) = \Delta(\tau) - 1 \otimes \tau - \tau \otimes 1$ is the reduced co-product.

Increments 0000 000

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Tree Multiplicative Property II

Strategy of the proof:

- 1. Reduce to monomials (Forests) by using linearity.
- 2. Induction on degree *n* of monomials.
- 3. Products of monomials, each of lower degree for which induction hypothesis holds: Requires understanding action $\Delta'(\tau\sigma)$ and $\delta X^{\tau\sigma}$.
- 4. Show relation for trees of degree *n*.

For the time being, we will only do step 4 (the interesting one).

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00 0000	0000	0000000 0000 00

Proof of Step 4.

In this step it remains to prove the relation for a single tree of degree *n*, i.e. $\tau = [\tau_1 \cdots \tau_k]_a$. Write $\Delta'(\tau_1 \cdots \tau_k) = \sum_i \theta_i^1 \otimes \theta_i^2$. Since $|\tau_1 \cdots \tau_k| = n - 1$, by hypothesis

$$\delta X^{\tau_1 \cdots \tau_k} = X^{\Delta'(\tau_1 \cdots \tau_k)} = \sum_i X^{\theta_i^1} X^{\theta_i^2}$$

Using the action of δ on \mathcal{I} from the lemma:

$$\delta X^{[\tau_1 \cdots \tau_k]_a} = \delta \mathcal{I}(dx^a \ X^{\tau_1 \cdots \tau_k}) = \delta x^a X^{\tau_1 \cdots \tau_k} + \sum_i \mathcal{I}(dx^a \ X^{\theta_i^1}) X^{\theta_i^2}$$
$$= X^{\bullet_a} X^{\tau_1 \cdots \tau_k} + \sum_i X^{[\theta_i^1]_a} X^{\theta_i^2} = X^{\bullet_a \otimes \tau_1 \cdots \tau_k} + \sum_i X^{[\theta_i^1]_a \otimes \theta_i^2}$$
$$= X^{\Delta'([\tau_1 \cdots \tau_k]_a)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The last equality can be understood in terms of cuts.

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00 000	0000	000000000000000000000000000000000000000

Example

In one dimension forests of degree less or equal to three are:

•, •, •, •, •, •, •, •

The reduced co-product acts as follows:

$$\Delta' \mathbf{s} = \mathbf{\bullet} \otimes \mathbf{\bullet}, \qquad \Delta'(\mathbf{\bullet} \mathbf{\bullet}) = \mathbf{2} \mathbf{\bullet} \otimes \mathbf{\bullet}$$
$$\Delta' \mathbf{s} = \mathbf{s} \otimes \mathbf{\bullet} + \mathbf{\bullet} \otimes \mathbf{s}$$
$$\Delta'(\mathbf{\bullet} \mathbf{s}) = \mathbf{\bullet} \otimes \mathbf{\bullet} + \mathbf{\bullet} \otimes \mathbf{\bullet} + \mathbf{s} \otimes \mathbf{\bullet} + \mathbf{s} \otimes \mathbf{s}$$
$$\Delta'(\mathbf{\bullet} \mathbf{s}) = \mathbf{\bullet} \otimes \mathbf{\bullet} + \mathbf{s} \otimes \mathbf{\bullet} + \mathbf{s} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{s}$$
$$\Delta'(\mathbf{\bullet} \mathbf{s}) = \mathbf{3} \mathbf{\bullet}^2 \otimes \mathbf{\bullet} + \mathbf{3} \mathbf{\bullet} \otimes \mathbf{\bullet}^2, \qquad \Delta' \mathbf{s}^2 = \mathbf{\bullet} \otimes \mathbf{\bullet} + 2\mathbf{s} \otimes \mathbf{\bullet}$$

Hence for example

$$\delta X^{[[\bullet],[\bullet]]} = \delta X^{\bullet} = X^{\bullet} X^{\bullet \bullet} + 2X^{\bullet} X^{\bullet}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

s Incre 000 0 000 Multiplicative Property 00 0000 Regularity •000 0000 Controlled Paths 00000000 0000 00

Section 4

Regularity of X

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Increment

Regularity

Controlled Paths 00000000 0000 00

Topologizing 2- and 3-Increments

Let $\mu > 0$. For $f \in C_2$ set

$$\|f\|_{\mu} := \sup_{s \neq t, s, t \in [0,T]} \left\{ \frac{f_{st}}{|s-t|^{\mu}} \right\}$$

and for $h \in \mathcal{C}_3$ we set

$$\|h\|_{\gamma,
ho} := \sup_{s,u,t\in[0,T]} \left\{ rac{|h_{tus}|}{|u-s|^{\gamma}|t-u|^{
ho}}
ight\}$$

$$\|h\|_{\mu} := \inf_{0 < \rho_i < \mu} \left\{ \sum_{i=1}^{N} \|h_i\|_{\rho_i, \mu - \rho_i} : h = \sum_{i=1}^{N} h_i, h_i \in \mathcal{C}_3, N \in \mathbb{N} \right\}.$$

Define $\mathcal{C}_2^{\mu} := \{f \in \mathcal{C}_2 : \|f\|_{\mu} < \infty\}, \mathcal{C}_2^{\mu} := \{f \in \mathcal{C}_3 : \|f\|_{\mu} < \infty\}.$

and finally $C_k^{1+} = \bigcup_{\mu > 1} C_k^{\mu}$.

Trees

ncrements 0000 000 Multiplicative Property 00 0000 Regularity

Controlled Paths

The Splitting-Map of the Short Exact Sequence

Theorem (The A-map) There exists a unique linear map $\Lambda : \mathcal{ZC}_3^{1+} \to \mathcal{C}_2^{1+}$ $\delta \Lambda = \operatorname{id}_{\mathcal{ZC}_3}.$ For any $\mu > 1$, this map is continuous from \mathcal{ZC}_3^{μ} to \mathcal{C}_2^{μ} $\|\Lambda h\|_{\mu} \leq \frac{1}{2^{\mu} - 2} \|h\|_{\mu}, \qquad h \in \mathcal{ZC}_3^{\mu}.$

The map provides a splitting that we will repeatedly use.

$$0 \longrightarrow \mathcal{ZC}_{2}^{1+} \xrightarrow{\text{incl}} \mathcal{C}_{2}^{1+} \xrightarrow{\delta_{2 \to 3}} \mathcal{ZC}_{3}^{1+} \longrightarrow 0$$

000 0000

ncrements 0000 000 Multiplicative Property 00 0000 Regularity

Controlled Paths 00000000 0000 00

An Axiomatic Definition of the Integral

We can abstract the previous constructions by distilling only the properties of the integration maps $\{I^a : C_2 \to C_2\}$ that we needed.

Definition

Call a linear map $I : \mathcal{D}_I \to \mathcal{D}_I$ on a sub-algebra $\mathcal{D}_I \subset \mathcal{C}_2^+$ containing the unit $e \in \mathcal{C}_2$ an **integral** if is satisfies the following properties.

1. $I(hf)_{ts} = I(h)_{ts}f_s$, for all $h \in \mathcal{D}_I$, $f \in \mathcal{C}_1$ where $(hf)_{ts} = h_{ts}f_s$, 2. $\delta I(h)_{tus} = I(e)_{tu}h_{us} + \sum_{i=1}^N I(h^{1,i})_{tu}h^{2,i}_{us}$ whenever $h \in \mathcal{D}_I$ and $\delta h_{tus} = \sum_{i=1}^N h^{1,i}_{tu}h^{2,i}_{us}$ for some $n \in$

whenever $n \in D_i$ and $\delta n_{tus} = \sum_{i=1}^{n} n_{tu} n_{us}$ for some $n \in \mathbb{N}$, $h^{1,i} \in D_i$.

With this definition we can construct a homomorphism $X : AT_{\mathcal{L}} \to C_2$ as before satisfying the commutativity relation.

Incremer 0000 000

Regularity

Controlled Paths 00000000 0000 00

Regularity and Branched Rough Paths

Given $\gamma \in (0,1]$ define q_γ on trees as

$$q_\gamma(au) = egin{cases} 1 & ext{if } | au| \leq 1/\gamma \ rac{1}{2^{\gamma| au|-2}} \sum q_\gamma(au^{(1)}) q_\gamma(au^{(2)}) & ext{if } | au| > 1/\gamma \end{cases}$$

The splitting stems from the the reduced co-product. On forests $\tau = \tau_1 \cdots \tau_k$, set $q_{\gamma}(\tau) = q_{\gamma}(\tau_1) \cdots q_{\gamma}(\tau_k)$.

Definition

Let $\gamma > 0$. We call a morphism of algebras $X : \mathcal{AT}_{\mathcal{L}} \to \mathcal{C}_2$ a γ -branched rough path (γ -BRP) if it satisfies $\delta X = X^{\Delta'}$ and

$$\|X^{ au}\|_{\gamma| au|} \leq BA^{| au|}q_{\gamma}(au), \quad ext{for all } au \in \mathcal{F}_{\mathcal{L}}$$

and constants $B \in [0, 1]$ and $A \ge 0$.

1 rees 000 0000 Increments 0000 000 Multiplicative Property 00 0000 Regularity

Controlled Paths 00000000 0000 00

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Extension from a Finite Set of Trees I

Theorem

Let $X : A_n T_{\mathcal{L}} \to C_2$ be a given morphism satisfying $\delta X = X^{\Delta'}$ and suppose that there exist $\gamma > 0$, $A \ge 0$, $B \in [0, 1]$ such that

$$\|X^{ au}\|_{\gamma| au|} \leq B \mathsf{A}^{| au|} q_{\gamma}(au) \quad ext{for all } au \in \mathcal{T}_{\mathcal{L}}{}^n,$$

with $\gamma(n+1) > 1$. Then there exists a unique extension of X to $\mathcal{AT}_{\mathcal{L}}$ as a γ -branched rough path with the same bounds.

l rees 000 0000

ncrements

Multiplicative Property 00 0000 Regularity

Controlled Paths

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extension from a Finite Set of Trees II

Outline of Proof: Via Induction and using the diagram below.

- 1. Show that $X^{\Delta'}$ maps to $\mathcal{ZC}_3^{|\tau|\gamma}$ for "large trees" τ .
- 2. Use continuity of Λ to show bounds for X^{τ} via splitting of short exact sequence.

000 0000

Increments 0000 000 Multiplicative Property 00 0000 Regularity

Controlled Paths 00000000 0000 00

Extension from a Finite Set of Trees III

Sketch of Proof.

Assume that we have a bounded extension $X : \mathcal{A}_m \mathcal{T}_{\mathcal{L}} \to \mathcal{C}_2$ satisfying commutativity. (True for n = m). For the induction step: Since $\gamma m \ge \gamma(n+1) > 1$, we have for $|\tau| = m$

$$\|X^{\Delta'(\tau)}\|_{m\gamma} \leq \sum_{i}' \|X^{\tau_{i}^{(1)} \otimes \tau_{i}^{(2)}}\|_{m\gamma} \leq \sum_{i}' \|X^{\tau_{i}^{(1)}}\|_{|\tau_{i}^{(1)}|\gamma} \|X^{\tau_{i}^{(2)}}\|_{|\tau_{i}^{(2)}|\gamma} < \infty$$

and

$$\delta X^{\Delta'(\tau)} = \sum_{i}^{\prime} [\delta X^{\tau_{i}^{(1)}}] X^{\tau_{i}^{(2)}} - X^{\tau_{i}^{(1)}}[\delta X^{\tau_{i}^{(2)}}] = \sum_{i}^{\prime} X^{(\mathrm{id} \otimes \Delta' - \Delta' \otimes \mathrm{id}) \Delta'(\tau)} = 0$$

Thus $X^{\Delta'(\tau)} \in \mathcal{ZC}_3 \cap \mathcal{C}_3^{m\gamma} = \mathcal{ZC}_3^{m\gamma}$. Now using continuity of Λ and splitting to get $\|X^{\tau}\|_{\gamma|\tau|} = \|\Lambda X^{\Delta'(\tau)}\|_{\gamma|\tau|} \leq B^2 A^{|\tau|} q_{\gamma}(\tau)$.

Incremen
0000

Regularity 0000 0000 Controlled Paths • 0000000 0000 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Section 5

Weakly Controlled Paths

We want to give a sensible notion of solutions of **rough** differential equations

$$\delta y = \sum_{a \in \mathcal{L}} I^a(f_a(y)), \qquad y_0 = \eta \in \mathbb{R}^k$$

where I^a is a family of integration maps giving rise to a $\gamma - BRP$, f_a is a collection of (sufficiently regular) vector-fields.

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00 0000	0000	0000000 0000 00

Definition

Let X be a γ -BRP and n the largest integer such that $n\gamma \leq 1$. For $\kappa \in (1/(n+1), \gamma]$, the path $y : [0, T] \to \mathbb{R}$ is a κ -weakly **controlled** by X if there exists $\{y^{\tau} \in \mathcal{C}_1^{|\tau|\kappa}\}_{\tau \in \mathcal{F}_n^{n-1}}$ and remainders $\{y^{\sharp} \in \mathcal{C}_{2}^{n\kappa}, y^{\tau,\sharp} \in \mathcal{C}_{2}^{(n-|\tau|)\kappa}\}_{\tau \in \mathcal{F}_{c}^{n-1}}$ such that

$$\delta y = \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{\tau} y^{\tau} + y^{\sharp}$$
(1)

$$\delta y^{\tau} = \sum_{\sigma \in \mathcal{F}_{\mathcal{L}}^{n-1}} \sum_{\rho} c'(\sigma, \tau, \rho) X^{\rho} y^{\sigma} + y^{\tau, \sharp}$$
(2)

for $\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}$, with $\delta y^{\tau} = y^{\tau,\sharp}$ when $|\tau| = n - 1$. Let $\mathcal{Q}_{\kappa}(X)$ be the vector space of κ -weakly controlled paths with norm $\|\cdot\|_{\mathcal{O}.\kappa}$

$$\|y\|_{\mathcal{Q},\kappa} = |y_0| + \|y^{\sharp}\|_{n\kappa} + \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} \|y^{\tau,\sharp}\|_{\kappa(n-|\tau|)}.$$

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00 0000	0000	0000000 0000 00

Example

Let us give an example with d = 1 of the structure of a controlled path. Take $\gamma > 1/5$ so that n = 4. Then $y \in Q_{\gamma}$ corresponds to the set of paths

$$y \in \mathcal{C}_1^{\gamma}, \ y^{\bullet} \in \mathcal{C}_1^{\gamma}, \ y^{\ddagger}, y^{\bullet \bullet} \in \mathcal{C}_1^{2\gamma}, \ y^{\ddagger}, y^{\ddagger \bullet}, y^{\ddagger}, y^{\bullet \bullet} \in \mathcal{C}_1^{3\gamma}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00	0000	0000000
0000	000	0000	0000	0000
				00

Example (Continued)

And the following algebraic relations hold

$$\delta y = X^{\bullet}y^{\bullet} + X^{\ddagger}y^{\ddagger} + X^{\bullet}y^{\bullet} + X^{\blacktriangledown}y^{\blacktriangledown} + X^{\ddagger}y^{\ddagger} + X^{\ddagger}y^{\ddagger} + X^{\bullet}y^{\bullet} + X^{\ddagger}y^{\ddagger} + y^{\ddagger}$$

$$\delta y^{\bullet} = X^{\bullet}(y^{\ddagger} + 2y^{\bullet\bullet}) + X^{\ddagger}(y^{\ddagger} + y^{\ddagger\bullet}) + X^{\bullet\bullet}(y^{\ddagger} + y^{\blacktriangledown} + 3y^{\bullet\bullet\bullet}) + y^{\bullet,\sharp}$$

$$\delta y^{\ddagger} = X^{\bullet}(y^{\ddagger} + 2y^{\blacktriangledown} + y^{\ddagger}) + y^{\ddagger,\sharp}$$

$$\delta y^{\bullet\bullet} = X^{\bullet}(y^{\ddagger} + y^{\bullet\bullet\bullet}) + y^{\bullet\bullet,\sharp}$$

$$\delta y^{\bullet\bullet} = y^{\bullet,\sharp} \qquad \delta y^{\ddagger} = y^{\ddagger,\sharp}$$

with remainders of orders

$$y^{\sharp} \in \mathcal{C}_{2}^{4\gamma}, \ y^{\bullet,\sharp} \in \mathcal{C}_{2}^{3\gamma}, \ y^{\clubsuit,\sharp}, y^{\bullet\bullet,\sharp} \in \mathcal{C}_{2}^{2\gamma} \ y^{\clubsuit,\sharp}, y^{\clubsuit\bullet,\sharp}, y^{\bullet\bullet,\sharp}, y^{\bullet\bullet,\sharp} \in \mathcal{C}_{2}^{\gamma}.$$

Increments 0000 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties of Weakly Controlled Paths

- An element in $Q_{\kappa}(X)$ is a path together with all its increments $\{y^{\tau}\}$ and an expansion in terms of X with remainder y^{\sharp} .
- Coefficients of this expansion have similar expansions of lower degree.
- The space $\mathcal{Q}_{\kappa}(X)$ can be endowed with the structure of a $\mathbb{R} Algebra$.
- It is closed under composition with sufficiently regular functions.

Increm 0000 000

Regularity 0000 0000 Controlled Paths

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Closedness under composition with regular functions

Let $\mathcal{L}_1 = \{1, \dots, k\}$ and $\mathcal{IL}_1 = \bigcup_{m \ge 0} \mathcal{L}_1^m$ the set of **multiindices**, with $|\overline{b}| = n$ whenever $\overline{b} \in \mathcal{L}_1^n$.

Lemma

Let n the largest integer such that $n\gamma \leq 1$, $\varphi \in C_b^n(\mathbb{R}^k, \mathbb{R})$ and $y \in \mathcal{Q}_{\kappa}(X; \mathbb{R}^k)$, then $z_t = \varphi(y_t)$ is a weakly controlled path, $z \in \mathcal{Q}_{\kappa}(X; \mathbb{R})$ where its coefficients are given by

$$z^{\tau} = \sum_{m=1}^{n-1} \sum_{\substack{\overline{b} \in \mathcal{IL}_{1} \\ |\overline{b}|=m}} \frac{\varphi_{\overline{b}}(y)}{m!} \sum_{\substack{\tau_{1}, \dots, \tau_{m} \in \mathcal{F}_{\mathcal{L}}^{n-1} \\ \tau_{1} \cdots \tau_{m} = \tau}} y^{\tau_{1}, b_{1}} \cdots y^{\tau_{m}, b_{m}}, \qquad \tau \in \mathcal{F}_{\mathcal{L}}^{n-1}$$

(note that all the sums are finite).

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00	0000	00000000
0000	000	0000	0000	0000

Sketch of Proof. Taylor expand φ to get $(\delta \varphi)_{\xi' \xi}$:

$$\varphi(\xi') - \varphi(\xi) = \sum_{m=1}^{n-1} \sum_{\substack{\overline{b} \in \mathcal{IL}_1 \\ |\overline{b}| = m}} \frac{\varphi_{\overline{b}}(\xi)}{m!} (\xi' - \xi)^{\overline{b}} + O(|\xi' - \xi|^n)$$

thus

$$\delta z_{ts} = \sum_{m=1}^{n-1} \sum_{\substack{\overline{b} \in \mathcal{IL}_1 \\ |\overline{b}| = m}} \frac{\varphi_{\overline{b}}(y_s)}{m!} (\delta y_{ts})^{\overline{b}} + O(|t-s|^{n\kappa})$$
$$= \sum_{m=1}^{n-1} \sum_{\substack{\tau^1 \dots \tau^m \in \mathcal{F}_{\mathcal{L}}^{n-1} \\ |\overline{b}| = m}} \sum_{\substack{\overline{b} \in \mathcal{IL}_1 \\ |\overline{b}| = m}} \frac{\varphi_{\overline{b}}(y_s)}{m!} y_s^{\tau^1 b_1} \cdots y_s^{\tau^m b_m} X_{ts}^{\tau^1 \dots \tau^m} + O(|t-s|^{n\kappa})$$

Also every z^{τ} has to satisfy the δ -equations: details skipped.

Increments

Regularity 0000 0000 Controlled Paths

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Extending the Integration maps

Recall the family of integrals $\{I^a : \mathcal{D}_I \to \mathcal{D}_I\}_a$ (either defined axiomatically or as integration against smooth functions).

We can extend their domain to C_1 , viz. Embed $f \in C_1 \mapsto f_s e_{st} \in C_2^+$, then set

$$I(f) = I(fe)$$

and since $fe = ef + \delta f$ we have

$$I(f) = I(e)f + I(\delta f)$$

for any $f \in \mathcal{C}_1$ such that $\delta f \in \mathcal{D}_2$

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000 0000	0000	00 0000	0000	00000000 0000 00

Theorem

The integral maps $\{I^a\}_{a \in \mathcal{L}}$ can be extended to maps $I^a : \mathcal{Q}_{\kappa}(X) \to \delta \mathcal{Q}_{\kappa}(X)$. If $y \in \mathcal{Q}_{\kappa}(X)$ then $\delta z = I^a(y)$ is such that

$$\delta z = X^{\bullet_a} z^{\bullet_a} + \sum_{\tau \in \mathcal{T}_{\mathcal{L}}^n} X^{\tau} z^{\tau} + z^{\flat}$$
(3)

where $z^{\bullet_a} = y$, $z^{[\tau]_a} = y^{\tau}$ and zero otherwise. Moreover

$$z^{\flat} = \Lambda \left[\sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1} \cup \{\mathbf{1}\}} X^{B^+_a(\tau)} y^{\tau,\sharp} \right] \in \mathcal{C}_2^{\kappa(n+1)}.$$

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000 0000	0000	00 0000	0000	0000000 0000 00

Proof I

Recall $I^{a}(y) = I^{a}(e)y + I^{a}(\delta y)$, hence we are done once we can show that $I^{a}(\delta y)$ is well-defined.

Since $y \in \mathcal{Q}_k$, we have the expansion

$$\delta y = \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{\tau} y^{\tau} + y^{\sharp}$$

Since \mathcal{D}_I is a linear space, we have $\sum_{\tau\in\mathcal{F_L}^{n-1}}X^{\tau}y^{\tau}\in\mathcal{D}_I,$ so that

$$I^{a}\Big(\sum_{\tau\in\mathcal{F}_{\mathcal{L}}^{n-1}}X^{\tau}y^{\tau}\Big)=\sum_{\tau\in\mathcal{F}_{\mathcal{L}}^{n-1}}I^{a}(X^{\tau})y^{\tau}=\sum_{\tau\in\mathcal{F}_{\mathcal{L}}^{n-1}}X^{[\tau]_{a}}y^{\tau}=I^{a}(\delta y-y^{\sharp})$$

Hence we will be done if we can show that $I^a(y^{\sharp})$ is well defined.

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000	0000	00 0000	0000	0000000 0000 00

Proof II

Strategy: show that $\delta I^a(y^{\sharp}) \in \mathcal{ZC} \cap \mathcal{C}_3^{(n+1)\kappa} \subset \mathcal{ZC}_3^{1+}$ and hence in the domain of Λ : uses axiomatic properties of I^a via

$$\delta I^{\mathfrak{s}}(y^{\sharp}) = I^{\mathfrak{s}}(e)y^{\sharp} + \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} I^{\mathfrak{s}}(X^{\tau})y^{\tau,\sharp} = X^{\bullet_{\mathfrak{s}}}y^{\sharp} + \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{[\tau]_{\mathfrak{s}}}y^{\tau,\sharp}$$

R.H.S. are well defined and well behaved objects. We need a technical lemma to calculate $\delta y^{\tau,\sharp}$, norm-estimates and properties of derivation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now set
$$I^{a}(y^{\sharp}) = \Lambda \left[X^{\bullet_{a}} y^{\sharp} + \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{[\tau]_{a}} y^{\tau,\sharp} \right]$$

Trees	Increments	Multiplicative Property	Regularity	Controlled Paths
000 0000	0000	00 0000	0000	0000000 0000 00

Proof III

Now combine everything:

$$I^{a}(y) = I^{a}(e)y + I^{a}(\delta y) = X^{\bullet_{a}}y + I^{a}\Big(\sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{\tau}y^{\tau}\Big) + \Lambda[...]$$

but this is just

$$I^{\mathfrak{s}}(y) = X^{ullet_{\mathfrak{s}}}y + \sum_{ au \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{[au]_{\mathfrak{s}}}y^{ au} + \Lambda[...]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

with $\Lambda[...] \in \mathcal{C}_2^{\kappa(n+1)}$, as claimed.

000

Increments 0000 000 Multiplicative Property 00 0000 Regularity

Controlled Paths

Rough Differential Equations I

Let $\{f_a\}_{a=1,...d} \subset \mathbf{CB}^n(\mathbb{R}^k; \mathbb{R}^k)$ be vector-fields, where *n* is the largest integer such that $n\gamma \leq 1$. Given integral maps I^a which defining a γ -BRP X the **rough differential equation**

$$\delta y = \sum_{a \in \mathcal{L}} I^a(f_a(y)), \qquad y_0 = \eta \in \mathbb{R}^k$$
(4)

in the time interval [0, T].

- Previous lemma showed that $f_a(y)$ is a κ -weakly controlled, whenever y is.
- Previous theorem showed that we can integrate κ-weakly controlled paths against *l^a*, obtaining a κ weakly controlled 2-increment.

Thus it makes sense to speak of a solution $y \in Q_{\gamma}(X; \mathbb{R}^k)$ via a fixed point problem in $Q_{\gamma}(X; \mathcal{R}^k)$ of

$$\delta \Gamma(y) = \sum_{a \in \mathcal{L}} I^a(f_a(y)), \qquad \Gamma(y)_0 = \eta$$

1 rees

ncrements 0000 000 Multiplicative Property 00 0000 Regularity

イロト 不得 トイヨト イヨト 二日

Controlled Paths

Rough Differential Equations II

Theorem

If $\{f_a\}_{a \in \mathcal{L}}$ is a family of C_b^n vectorfields then the rough differential equation δy has a global solution $y \in \mathcal{Q}_{\gamma}(X; \mathcal{R}^k)$ for any initial condition $\eta \in \mathbb{R}^k$. If the vectorfields are C_b^{n+1} the solution $\Phi(\eta, X) \in \mathcal{Q}_{\gamma}(X; \mathbb{R}^k)$ is unique and the map $\Phi : \mathbb{R}^k \times \Omega_{\mathcal{T}_{\mathcal{L}}}^{\gamma} \to \mathcal{Q}_{\gamma}(X; \mathbb{R}^k)$ is Lipschitz in any finite interval [0, T].

1	ncrements
(0000
(000

Regularity 0000 0000 Controlled Paths 00000000 0000 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

- By endowing the set of rooted decorated trees with algebraic structure, we obtained a **multiplicative property**.
- It uses the combinations of trees and algebraic integration theory to define path wise integration against integrands with roughness $\gamma > 0$.
- This theory can be used to study controlled and rough differential equations.