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Trees Increments Multiplicative Property Regularity Controlled Paths

Section 1

Trees, Gardening and Forestry
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Decorated Rooted Trees

A rooted tree is a finite, cycle-free graph with a distinguished
node (its root).

Let L be a finite set of labels. A L-decorated tree is a rooted
tree together with an association of a label to every vertex.

For example L = {1, 2, 3}:

•2 •1
•3

•2
•2•1

•1
•3
•2

•1
•1

•1•2
•3•1
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Cultivating Trees

We have a recursive way of growing rooted, labeled trees.

Given τ1, . . . , τk trees and a label a ∈ L, let

τ = [τ1, · · · , τk ]a

be the tree obtained by attaching τ1, · · · , τk to a new root a.

Observe that we can grow any tree using the set of labeled vertices
{•a}a∈L and the map [−]−.

[•] = •
•

[•, [•]] = •
•
•
•
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Tree Polynomial Algebra

Let TL denote the set of decorated trees and 1 the empty tree.

We can define the tree polynomial algebra

ATL = 〈TL ∪ {1}〉R−Alg

Elements are finite formal sums of formal monomials with
coefficients in R.

Explicit construction: FL = {τ1 · · · τk : n ∈ N0, τi ∈ TL} is the
set of labeled forests. Then spanR{FL} is an object in R-Mod, on
which we declare inner multiplication of polynomials to obtain an
algebra.
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Grading

Graduation g(τ1 · · · τk) = |τ1|+ . . . + |τk | with |τi | being the
number of vertices of the tree (the empty has zero vertices).

Setting Fn the set of forests of degree up to n:

AnTL = 〈Fn〉R−Mod

and

ATL =
∞
∐

n=0

AnTL

We have the inclusions

TL →֒ FL →֒ ATL.
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Dualizing: Co-Algebra
Define the co-product ∆ : ATL → ATL ⊗ATL as R-Alg
morphism:

∆(τ1 · · · τk) := ∆(τ1) · · ·∆(τk) and ∆(1) := 1⊗ 1

recursively on generators via

∆(τ) := 1⊗ τ +
∑

a∈L

(Ba

+ ⊗ id)[∆(Ba

−(τ))]

where Ba
+(1) = •a and Ba

+(τ1 · · · τk) = [τ1, . . . , τk ]a.
Ba
− is its inverse, which removes the root it its label is a and erases

the entire tree otherwise, i.e.

Ba

−(B
b

+(τ1 · · · τk)) =

{

τ1 · · · τk if a = b,

0 otherwise.
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Combinatorics via the Co-Product: “Topiary / Forestry”

By an admissible cut c of a tree τ we mean detaching a set of
branches from the tree.

Given a cut c ∈ τ , denote by Rc(τ) ∈ TL the remaining subtree
and by Pc(τ) ∈ FL the forest of detached and newly planted
branches.

For example: all cuts of the forest: ••
•

••
•

••
•

••
•

••
•

••
•

••
•

Explicit description of the co-product in terms of cuts

∆(τ) = 1⊗ τ + τ ⊗ 1+
∑

c∈C(τ)

Rc(τ)⊗ Pc(τ)
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Section 2

Increments
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Increments
T > 0, V a vector-space, k ∈ N, k ≥ 1.

Ck(V) :=
{

f ∈ C([0,T ]k ,V) : ft1,...,tk = 0 if ti = ti+1, 1 ≤ i ≤ k−1
}

Space of k-increments, define C∗ = {Ck : k ∈ N} in N-grad-Mod.

The Co-Boundary map

δ : Ck → Ck+1 g 7→ (δg)t1 ···tk+1
=

k+1
∑

i=1

(−1)igt1···̂ti ···tk+1

turns (C∗, δ) into a long exact sequence.

Define the space of k-cocycles

ZCk = ker(δ) ∩ Ck .
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Grading / Exterior Product

On (C∗, δ) we have an exterior product:

g ∈ Cn, h ∈ Cm

then gh ∈ Cm+n−1 defined by

(gh)t1,...tm+n−1 = gt1,...,tnhtn,...,tn+m−1

Then δ acts as graded derivation, in particular for f , g ∈ C2:

δ(fg) = (δf )g − f (δg)
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An Important Example
Iterated integrals against smooth functions:

For f ∈ C∞([0,T ],R) ⊂ C1, and h ∈ C2, let

I(df h)ts :=

ˆ

t

s

husdfu ∈ C2

Lemma
Let h ∈ C2 such that δhtus =

∑

N

i=1 h
1,i
tu h

2,i
us for some N ∈ N,

h1,i , h2,i ∈ C2 and let x ∈ C∞([0,T ],R). Then

δI(dx h)tus = I(dx)tuhus +

N
∑

i=1

I(dx h1,i)tuh
2,i
us
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Iterated Integrals and Rooted Trees

Let L = {1, . . . , d} and x = {xa}a∈L ⊂ C∞([0,T ]).

Define the map
X : TL → C([0,T ]2)

via its value on generators

(t, s) 7→ X •a
ts :=

ˆ

t

s

dxau = (δxa)ts ,

(t, s) 7→ X
[τ1···τk ]a
ts :=

ˆ

t

s

k
∏

i=1

X τi
usdx

a

u
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Extension to a Morphism of Algebras

On C2 we have an R-Alg structure, with inner product

◦ : C2 ⊗ C2 → C2 f ⊗ g 7→ (f ◦ g)ts := ftsgts

Freely adjoin unit C+
2 = C2 ⊕ e, with est = 1 for all s, t ∈ [0,T ].

Extend X to a morphism of R-Alg: X : ATL → C+
2 .

(t, s) 7→ X
[τ1···τk ]a
ts :=

ˆ

t

s

X τ1
us ◦ . . . ◦ X

τkdxau .

And to the tensor product ATL ⊗ATL via the exterior product
C2 ⊗ C2 → C3

X τ⊗σ 7→ X τ ⊗ X σ 7→ X τX σ
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Integration on a Sub-Algebra

Recall the family of integration maps associated to
x = {xa}a∈L ⊂ C∞([0,T ])

I a : C2 → C2, h 7→ I(xa h)

As a consequence of the definitions we obtain the following
fundamental relation

I a(X σ) = X [σ]a = XBa
+(σ)

Denote by AX ⊂ C+
2 the subalgebra generated by {X τ}τ∈TL . Then

the map Ba
+ represents integration on the subalgebra.
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Chen’s Multiplicative Property I

From the family {xa}a∈L define iterated integrals recursively:

I(dxa1 dxa2 · · · dxan) = I(dxa1 I(dxa2 dxa3 · · · dxan))

The sub-algebra AX contains these iterated integrals, which
correspond to trees of the form σ = [· · · [•an ]an−1 · · · ]a1 .

I(dxa1 · · · dxan) = I a1 · · · I an−1(δxan ) = XB
a1
+ ···B

an−1
+ (•an ) = X [···[•an ]an−1 ··· ]a1

From the action of δ on the integral we recover Chen’s
multiplicative property

δX σ = δI(dxa1 · · · dxan)stu =
n−1
∑

k=1

I(dxa1 · · · dxak )stI(dx
ak+1 · · · dxan)tu
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Chen’s Multiplicative Property II

Non-trivial cuts of σ = [· · · [•an ]an−1 · · · ]a1 break it into two pieces,

∆′(σ) =
n−1
∑

k=1

[· · · [•ak ]ak−1
· · · ]a1 ⊗ [· · · [•an ]an−1 · · · ]ak+1

and hence

X∆′(σ) =
n−1
∑

k=1

X [···[•a
k
]a
k−1

··· ]a1X [···[•an ]an−1 ··· ]ak+1

so that with Chen’s multiplicative property

δX σ = X∆′(σ)

for all ‘sticks’ σ.
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Tree Multiplicative Property I
We can extend this fundamental commutativity property.

Theorem
The morphism X : ATL → C2 satisfies the relation:

δX τ = X∆′(τ) for all τ ∈ ATL,

i.e. the following diagram commutes:

ATL ATL ⊗ATL

C2 C3

∆′

X X

δ

where ∆′(τ) = ∆(τ)− 1⊗ τ − τ ⊗ 1 is the reduced co-product.
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Tree Multiplicative Property II

Strategy of the proof:

1. Reduce to monomials (Forests) by using linearity.

2. Induction on degree n of monomials.

3. Products of monomials, each of lower degree for which
induction hypothesis holds:
Requires understanding action ∆′(τσ) and δX τσ .

4. Show relation for trees of degree n.

For the time being, we will only do step 4 (the interesting one).
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Proof of Step 4.

In this step it remains to prove the relation for a single tree of
degree n, i.e. τ = [τ1 · · · τk ]a. Write ∆′(τ1 · · · τk) =

∑

i
θ1
i
⊗ θ2

i
.

Since |τ1 · · · τk | = n− 1, by hypothesis

δX τ1···τk = X∆′(τ1···τk ) =
∑

i

X θ1
i X θ2

i

Using the action of δ on I from the lemma:

δX [τ1···τk ]a = δI(dxa X τ1···τk ) = δxaX τ1···τk +
∑

i

I(dxa X θ1
i )X θ2

i

= X •aX τ1···τk +
∑

i

X [θ1
i
]aX θ2

i = X •a⊗τ1···τk +
∑

i

X [θ1
i
]a⊗θ2

i

= X∆′([τ1···τk ]a)

The last equality can be understood in terms of cuts.
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Example

In one dimension forests of degree less or equal to three are:

•, ••, ••, ••
•
, •••, •••, •

••

The reduced co-product acts as follows:

∆′
•
• =•⊗•, ∆′(••)=2•⊗•

∆′
•
•
•
= •

• ⊗•+•⊗•
•

∆′(•••)=•⊗••+••⊗•+•
•⊗•+•⊗•

•

∆′(•3)=3•2⊗•+3•⊗•2, ∆′
•
••=•⊗••+2•

•⊗•

Hence for example

δX [[•],[•]] = δX •
••

= X •X •• + 2X •
•
X •
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Section 4

Regularity of X
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Topologizing 2- and 3-Increments

Let µ > 0. For f ∈ C2 set

‖f ‖µ := sup
s 6=t,s,t∈[0,T ]

{

fst
|s − t|µ

}

and for h ∈ C3 we set

‖h‖γ,ρ := sup
s,u,t∈[0,T ]

{

|htus |

|u − s|γ |t − u|ρ

}

‖h‖µ := inf
0<ρi<µ

{

N
∑

i=1

‖hi‖ρi ,µ−ρi : h =
N
∑

i=1

hi , hi ∈ C3, N ∈ N

}

.

Define Cµ
2 := {f ∈ C2 : ‖f ‖µ < ∞}, Cµ

3 := {f ∈ C3 : ‖f ‖µ < ∞},
and finally C1+

k
= ∪µ>1C

µ
k
.
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The Splitting-Map of the Short Exact Sequence

Theorem (The Λ-map)

There exists a unique linear map Λ : ZC1+
3 → C1+

2

δΛ = idZC3 .

For any µ > 1, this map is continuous from ZCµ
3 to Cµ

2

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 .

The map provides a splitting that we will repeatedly use.

0 ZC1+
2 C1+

2 ZC1+
3 0incl δ2→3

Λ
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An Axiomatic Definition of the Integral

We can abstract the previous constructions by distilling only the
properties of the integration maps {I a : C2 → C2} that we needed.

Definition
Call a linear map I : DI → DI on a sub-algebra DI ⊂ C+

2 containing
the unit e ∈ C2 an integral if is satisfies the following properties.

1. I (hf )ts = I (h)ts fs , for all h ∈ DI , f ∈ C1 where (hf )ts = hts fs ,

2. δI (h)tus = I (e)tuhus +
∑

N

i=1 I (h
1,i )tuh

2,i
us

whenever h ∈ DI and δhtus =
∑

N

i=1 h
1,i
tu h

2,i
us for some n ∈

N, h1,i ∈ DI .

With this definition we can construct a homomorphism
X : ATL → C2 as before satisfying the commutativity relation.
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Regularity and Branched Rough Paths

Given γ ∈ (0, 1] define qγ on trees as

qγ(τ) =

{

1 if |τ | ≤ 1/γ
1

2γ|τ |−2

∑

qγ(τ
(1))qγ(τ

(2)) if |τ | > 1/γ

The splitting stems from the the reduced co-product. On forests
τ = τ1 · · · τk , set qγ(τ) = qγ(τ1) · · · qγ(τk).

Definition
Let γ > 0. We call a morphism of algebras X : ATL → C2 a
γ-branched rough path (γ-BRP) if it satisfies δX = X∆′

and

‖X τ‖γ|τ | ≤ BA|τ |qγ(τ), for all τ ∈ FL

and constants B ∈ [0, 1] and A ≥ 0.
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Extension from a Finite Set of Trees I

Theorem
Let X : AnTL → C2 be a given morphism satisfying δX = X∆′

and suppose that there exist γ > 0, A ≥ 0, B ∈ [0, 1] such that

‖X τ‖γ|τ | ≤ BA|τ |qγ(τ) for all τ ∈ TL
n,

with γ(n + 1) > 1. Then there exists a unique extension of X
to ATL as a γ-branched rough path with the same bounds.
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Extension from a Finite Set of Trees II

Outline of Proof: Via Induction and using the diagram below.

1. Show that X∆′
maps to ZC

|τ |γ
3 for ”large trees” τ .

2. Use continuity of Λ to show bounds for X τ via splitting of
short exact sequence.

ATL ATL ⊗ATL

C2 C3

C
γ|τ |
2 ZC3 ∩ C

γ|τ |
3

∆′

X X

δ

incl incl

Λ
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Extension from a Finite Set of Trees III

Sketch of Proof.
Assume that we have a bounded extension X : AmTL → C2
satisfying commutativity. (True for n = m). For the induction step:
Since γm ≥ γ(n + 1) > 1, we have for |τ | = m

‖X∆′(τ)‖mγ ≤

′
∑

i

‖X τ
(1)
i

⊗τ
(2)
i ‖mγ ≤

′
∑

i

‖X τ
(1)
i ‖

|τ
(1)
i

|γ
‖X τ

(2)
i ‖

|τ
(2)
i

|γ
< ∞

and

δX∆′(τ) =
′

∑

i

[δX τ
(1)
i ]X τ

(2)
i −X τ

(1)
i [δX τ

(2)
i ] =

′
∑

i

X (id⊗∆′−∆′⊗id)∆′(τ) = 0

Thus X∆′(τ) ∈ ZC3 ∩ Cmγ
3 = ZCmγ

3 . Now using continuity of Λ
and splitting to get ‖X τ‖γ|τ | = ‖ΛX∆′(τ)‖γ|τ | ≤ B2A|τ |qγ(τ).
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Section 5

Weakly Controlled Paths

We want to give a sensible notion of solutions of rough
differential equations

δy =
∑

a∈L

I a(fa(y)), y0 = η ∈ R
k

where I a is a family of integration maps giving rise to a γ − BRP ,
fa is a collection of (sufficiently regular) vector-fields.



Trees Increments Multiplicative Property Regularity Controlled Paths

Definition
Let X be a γ-BRP and n the largest integer such that nγ ≤ 1. For
κ ∈ (1/(n + 1), γ], the path y : [0,T ] → R is a κ-weakly

controlled by X if there exists {y τ ∈ C
|τ |κ
1 }τ∈FL

n−1 and

remainders {y ♯ ∈ Cnκ
2 , y τ,♯ ∈ C

(n−|τ |)κ
2 }τ∈FL

n−1 such that

δy =
∑

τ∈FL
n−1

X τy τ + y ♯ (1)

δy τ =
∑

σ∈FL
n−1

∑

ρ

c ′(σ, τ, ρ)X ρyσ + y τ,♯ (2)

for τ ∈ FL
n−1, with δy τ = y τ,♯ when |τ | = n− 1. Let Qκ(X ) be

the vector space of κ-weakly controlled paths with norm ‖ · ‖Q,κ

‖y‖Q,κ = |y0|+ ‖y ♯‖nκ +
∑

τ∈FL
n−1

‖y τ,♯‖κ(n−|τ |).
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Example

Let us give an example with d = 1 of the structure of a controlled
path. Take γ > 1/5 so that n = 4. Then y ∈ Qγ corresponds to
the set of paths

y ∈ Cγ
1 , y• ∈ Cγ

1 , y•
•
, y•• ∈ C2γ

1 , y •
••
, y•

•
•y •

••
, y•

•
•

, y••• ∈ C3γ
1
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Example (Continued)

And the following algebraic relations hold

δy = X •y• + X •

•

y•

•

+ X ••y•• + X •

••

y •

••

+ X •

•

•y•

•

• + X •

••

y •

••

+

+ X •••y••• + X •

•

•

y•

•

•

+ y ♯

δy• = X •(y•

•

+ 2y••) + X •

•

(y•

•

•

+ y•

•
•) + X ••(y•

•
• + y •

••

+ 3y•••) + y•,♯

δy•

•

= X •(y•

•
• + 2y •

••

+ y•

•

•

) + y•

•,♯

δy•• = X •(y•

•
• + y•••) + y••,♯

δy •

••

= y •

••,♯ δy•

•

• = y•

•

•
,♯

δy••• = y•••
,♯ δy•

•

•

= y•

•

•

,♯

with remainders of orders

y ♯ ∈ C4γ
2 , y•,♯ ∈ C3γ

2 , y•
•,♯, y••,♯ ∈ C2γ

2 y •
••,♯, y•

•
•,♯, y•••,♯, y•

•
•
,♯ ∈ Cγ

2 .
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Properties of Weakly Controlled Paths

• An element in Qκ(X ) is a path together with all its increments
{y τ} and an expansion in terms of X with remainder y ♯.

• Coefficients of this expansion have similar expansions of lower
degree.

• The space Qκ(X ) can be endowed with the structure of a
R− Algebra.

• It is closed under composition with sufficiently regular
functions.
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Closedness under composition with regular functions

Let L1 = {1, . . . , k} and IL1 = ∪m≥0L
m
1 the set of multiindices,

with |b| = n whenever b ∈ Ln
1.

Lemma
Let n the largest integer such that nγ ≤ 1, ϕ ∈ Cn

b
(Rk ,R) and

y ∈ Qκ(X ;Rk), then zt = ϕ(yt) is a weakly controlled path,
z ∈ Qκ(X ;R) where its coefficients are given by

zτ =

n−1
∑

m=1

∑

b∈IL1

|b|=m

ϕ
b
(y)

m!

∑

τ1,...,τm∈FL
n−1

τ1···τm=τ

y τ1,b1 · · · y τm,bm , τ ∈ FL
n−1

(note that all the sums are finite).
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Sketch of Proof.
Taylor expand ϕ to get (δϕ)ξ′ξ:

ϕ(ξ′)− ϕ(ξ) =
n−1
∑

m=1

∑

b∈IL1

|b|=m

ϕ
b
(ξ)

m!
(ξ′ − ξ)b + O(|ξ′ − ξ|n)

thus

δzts =

n−1
∑

m=1

∑

b∈IL1

|b|=m

ϕ
b
(ys)

m!
(δyts )

b + O(|t − s|nκ)

=

n−1
∑

m=1

∑

τ1···τm∈Fn−1
L

∑

b∈IL1

|b|=m

ϕ
b
(ys)

m!
y τ

1
b1

s · · · y τ
m
bm

s X τ1···τm

ts +O(|t − s|nκ)

Also every zτ has to satisfy the δ-equations: details skipped.



Trees Increments Multiplicative Property Regularity Controlled Paths

Extending the Integration maps

Recall the family of integrals {I a : DI → DI}a (either defined
axiomatically or as integration against smooth functions).

We can extend their domain to C1, viz.
Embed f ∈ C1 7→ fsest ∈ C+

2 , then set

I (f ) = I (fe)

and since fe = ef + δf we have

I (f ) = I (e)f + I (δf )

for any f ∈ C1 such that δf ∈ D2



Trees Increments Multiplicative Property Regularity Controlled Paths

Theorem
The integral maps {I a}a∈L can be extended to maps
I a : Qκ(X ) → δQκ(X ). If y ∈ Qκ(X ) then δz = I a(y) is such
that

δz = X •az•a +
∑

τ∈TL
n

X τzτ + z ♭ (3)

where z•a = y , z [τ ]a = y τ and zero otherwise. Moreover

z ♭ = Λ





∑

τ∈FL
n−1∪{1}

XB+
a (τ)y τ,♯



 ∈ C
κ(n+1)
2 .
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Proof I

Recall I a(y) = I a(e)y + I a(δy), hence we are done once we can
show that I a(δy) is well-defined.

Since y ∈ Qk , we have the expansion

δy =
∑

τ∈FL
n−1

X τy τ + y ♯

Since DI is a linear space, we have
∑

τ∈FL
n−1 X τy τ ∈ DI , so that

I a
(

∑

τ∈FL
n−1

X τy τ
)

=
∑

τ∈FL
n−1

I a(X τ )y τ =
∑

τ∈FL
n−1

X [τ ]ay τ = I a(δy−y ♯)

Hence we will be done if we can show that I a(y ♯) is well defined.
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Proof II

Strategy: show that δI a(y ♯) ∈ ZC ∩ C
(n+1)κ
3 ⊂ ZC1+

3 and hence in
the domain of Λ: uses axiomatic properties of I a via

δI a(y ♯) = I a(e)y ♯+
∑

τ∈FL
n−1

I a(X τ )y τ,♯ = X •ay ♯+
∑

τ∈FL
n−1

X [τ ]ay τ,♯

R.H.S. are well defined and well behaved objects. We need a
technical lemma to calculate δy τ,♯, norm-estimates and properties
of derivation.

Now set I a(y ♯) = Λ
[

X •ay ♯ +
∑

τ∈FL
n−1 X [τ ]ay τ,♯

]
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Proof III

Now combine everything:

I a(y) = I a(e)y + I a(δy) = X •ay + I a
(

∑

τ∈FL
n−1

X τy τ
)

+ Λ[...]

but this is just

I a(y) = X •ay +
∑

τ∈FL
n−1

X [τ ]ay τ + Λ[...]

with Λ[...] ∈ C
κ(n+1)
2 , as claimed.
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Rough Differential Equations I
Let {fa}a=1,...d ⊂ CBn(Rk ;Rk) be vector-fields, where n is the
largest integer such that nγ ≤ 1. Given integral maps I a which
defining a γ-BRP X the rough differential equation

δy =
∑

a∈L

I a(fa(y)), y0 = η ∈ R
k (4)

in the time interval [0,T ].

• Previous lemma showed that fa(y) is a κ-weakly controlled,
whenever y is.

• Previous theorem showed that we can integrate κ-weakly
controlled paths against I a, obtaining a κ weakly controlled
2-increment.

Thus it makes sense to speak of a solution y ∈ Qγ(X ;Rk) via a
fixed point problem in Qγ(X ;Rk) of

δΓ(y) =
∑

a∈L

I a(fa(y)), Γ(y)0 = η
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Rough Differential Equations II

Theorem
If {fa}a∈L is a family of Cn

b
vectorfields then the rough

differential equation δy has a global solution y ∈ Qγ(X ;Rk)
for any initial condition η ∈ R

k .
If the vectorfields are Cn+1

b
the solution Φ(η,X ) ∈ Qγ(X ;Rk)

is unique and the map Φ : Rk ×Ωγ
TL

→ Qγ(X ;Rk) is Lipschitz
in any finite interval [0,T ].
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Summary

• By endowing the set of rooted decorated trees with algebraic
structure, we obtained a multiplicative property.

• It uses the combinations of trees and algebraic integration
theory to define path wise integration against integrands

with roughness γ > 0.

• This theory can be used to study controlled and rough
differential equations.
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